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Creating a first-pass algorithm for corrosion assessment in bridge inspections 
using machine learning and UAV-collected imagery data

Hana Herndon and Iris Tien 

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA 

ABSTRACT 
Unmanned aerial vehicles (UAVs) have the potential to reduce bridge inspection time and cost while 
increasing safety. However, UAV-collected field data has inherent properties that complicate damage 
assessment. In this article, the authors integrate UAV-collected imagery data with automatic defect 
detection to create a novel first-pass bridge inspection algorithm, which aims to conduct an initial cor
rosion assessment to determine if further inspection is needed. The authors use UAV-captured images 
of bridges near Atlanta, Georgia, USA, to create a dataset representative of bridge inspections, includ
ing the presence of chaos and misleading objects. The proposed methodology integrates deep learn
ing methods (fully convolutional network (FCN)) to remove natural elements in the image background 
that resemble corrosion, image processing techniques to quantify texture and reduce lighting effects, 
and unsupervised learning (K-means) for corrosion segmentation. Experimental results show that the 
K-means algorithm outperforms other segmentation methods, including image thresholding and deep 
learning, with a recall of 0.78 and mIoU of 0.72 on UAV-collected field data. Thus, the newly devel
oped method is a promising tool to improve the efficiency and safety of bridge inspections by reduc
ing the number of full inspections conducted on structurally sound bridges.
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1. Introduction

Corrosion is a destructive process, characterized by an elec
trochemical interaction between a metal and its environ
ment (Javaherdashti, 2000). The implications of this process 
are particularly concerning for civil infrastructure because it 
leads to significant deterioration, decreases the mechanical 
properties of the metal, and poses a risk of significant fail
ures such as collapse (Nash et al., 2022). Corrosion is a criti
cal degradation mechanism to consider for bridges in 
particular as it is one of the most common causes of bridge 
failure, along with scour and construction mistakes (W. Lin 
& Yoda, 2017). It is essential to address corrosion in these 
structures to maintain their integrity and safety. For engi
neers to make well-informed decisions regarding repairs and 
reconstruction, they must have a comprehensive under
standing of every asset’s condition, including the damage 
induced by corrosion. The effectiveness of prioritization, 
repair, and reconstruction decisions in bridge asset manage
ment relies on conducting rigorous, accurate, and compre
hensive bridge inspections. However, existing bridge 
inspection methods are time-consuming, expensive, and 
highly disruptive to traffic. They require hours of manual 
labor and road closures while an expert inspects the struc
tural site (Abdallah et al., 2022; Jahanshahi et al., 2009). In 
addition, they often put inspectors at risk (J. J. Lin et al., 
2021; Tien & Herndon, 2023).

The advent of affordable unmanned aerial vehicles 
(UAVs) that can carry cameras close to a structure has pro
vided a potential means to improve the time- and cost- 
efficiency, as well as safety, of bridge inspections. Recent 
surveys show that an increasing number of state 
Departments of Transportation (DOTs) are interested in 
using UAVs for bridge inspections because they are non- 
contact, time-efficient, and cost-efficient (Jeong et al., 2020; 
Tien & Herndon, 2023). These UAVs may be equipped with 
one or multiple sensors, including a super-pixel camera or 
an infrared camera. Additionally, with the increased interest 
from DOTs, some UAVs have features that improve their 
ability to conduct bridge inspections, such as 180-degree 
camera rotation and obstacle avoidance sensors that reduce 
the reliance on GPS (Dorafshan et al., 2018; Tomiczek et al., 
2019).

To facilitate the bridge inspection process further, 
improvements in computer vision and machine learning 
algorithms combined with increasing computer power have 
opened the door for research into automated corrosion 
detection and assessment from visual imagery (Nash et al., 
2022), which also has the potential to improve the objectiv
ity and accuracy of bridge inspections. Corrosion assessment 
tasks that can be conducted using computer vision and 
machine learning algorithms consist of three types: detec
tion, localization, and segmentation. Detection algorithms 
determine if corrosion exists in the image without specifying 
its location or extent. Localization algorithms, on the other 

CONTACT Hana Herndon hnherndon@gatech.edu School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA. 
� 2025 Informa UK Limited, trading as Taylor & Francis Group

STRUCTURE AND INFRASTRUCTURE ENGINEERING 
https://doi.org/10.1080/15732479.2025.2470857

http://crossmark.crossref.org/dialog/?doi=10.1080/15732479.2025.2470857&domain=pdf&date_stamp=2025-03-03
http://www.tandfonline.com


hand, pinpoint the location of the defect. Finally, segmenta
tion algorithms determine the size and location of the 
defect, providing the most information for inspectors. 

In this article, the authors create a novel first-pass bridge 
inspection algorithm that integrates deep learning methods, 
image processing techniques, and unsupervised learning 
approaches to segment corrosion in bridge inspection 
images. This approach aims to segment surface corrosion on 
exposed steel members, and can be applied to any bridge 
with exposed steel girders or piles. The authors use UAVs 
to collect images of bridges near Atlanta, Georgia, USA, cre
ating a dataset that is representative of field bridge inspec
tion conditions. This dataset is characterized by variability 
in lighting and features in the images, and contains numer
ous natural elements outside of and surrounding the bridges 
that mimic corrosion in texture and color, which present 
challenges for many algorithms.

The article introduces an innovative approach to be used 
as a first-pass bridge inspection to segment corrosion and 
compares corrosion assessment algorithms on the same 
dataset. A key intellectual contribution of this paper is the 
comparison of multiple approaches on a single UAV- 
collected dataset, demonstrating the performance of state-of- 
the-art methods and allowing DOTs to evaluate which algo
rithms are most suitable for UAV-aided inspections. 
Additionally, the proposed methods are applied to the 
widely-used COCO Bridge dataset (Bianchi & Hebdon, 
2021a) and another UAV-collected dataset with less chaotic 
elements to evaluate their generalizability. The practical 
application of these algorithms to datasets that are represen
tative of real-world UAV-collected inspection data illustrates 
how UAVs, computer vision, and machine learning could 
best be integrated into the bridge inspection process.

This paper is organized as follows. Section 2 discusses 
previous research and background on corrosion assessment 
using visual imagery. Section 3 describes the proposed 
methodology for a first-pass bridge inspection. Section 4
presents the results of the methodology applied to field-col
lected bridge inspection data. Multiple accuracy metrics are 
provided and the results are evaluated compared to out
comes using other methods. The main conclusions of this 
paper are summarized in Section 5.

2. Background

Most early studies use image processing to detect corrosion 
in images without localizing or segmenting the defects 
(Itzhak et al., 1981). While this approach requires the least 
amount of computational time and complexity, it does not 
provide comprehensive data about the damage that is 
important for bridge inspections. Some researchers have 
used image processing techniques such as texture threshold
ing and color thresholding to localize and segment corro
sion in images (Bonnin-Pascual & Ortiz, 2014; Khayatazad 
et al., 2020). However, they found that these methods can 
be prone to false positives and do not perform well in situa
tions with misleading objects or nonuniform lighting, which 
are characteristic of bridge inspections. Additionally, the 

parameters in image processing approaches must be fine- 
tuned by trial-and-error, which is time consuming 
(Khayatazad et al., 2022) and not generalizable across 
applications.

To mitigate these limitations, researchers have investi
gated the use of machine learning algorithms for corrosion 
assessment. Son et al. (2014) evaluated six different machine 
learning approaches for corrosion assessment: support vec
tor machine (SVM), back-propagation neural network 
(BPNN), J48 decision tree, Naïve Bayes, logistic regression, 
and k-nearest neighbor (KNN). They found that SVM, J48, 
and KNN all perform with precision and recall above 0.96, 
with J48 requiring the shortest test time. However, these 
methods have also been found to be prone to false positives 
in environments with misleading objects or nonuniform 
lighting (Bonnin-Pascual & Ortiz, 2014; Khayatazad et al., 
2020).

More recently, researchers have investigated the use of 
deep learning for corrosion segmentation. Deep learning 
can be advantageous because these algorithms automatically 
learn features that must be handcrafted in traditional 
machine learning algorithms and have been shown to per
form better on complex datasets. Atha and Jahanshahi 
(2018) tested multiple convolutional neural network (CNN) 
architectures for corrosion detection, finding the best one to 
work with an F1 score of 0.96. Fondevik et al. (2020) seg
mented corrosion on images of bridges collected by human 
inspectors with a mean intersection-over-union (mIoU) of 
0.78. Bianchi and Hebdon (2021b, 2022) segmented multiple 
classes of corrosion on images collected by human inspec
tors with a weighted F1 score of 0.88. Nash et al. (2022) seg
mented corrosion on images of pipes in industrial yards 
with an F1 score of 0.84. Zhou et al. (2022) used a CNN to 
localize corrosion in images, then used image processing to 
segment the corrosion in the detected bounding boxes. This 
methodology worked with an F1 score of 0.96. Finally, 
Rahman et al. (2021) used a semi-autonomous labeling sys
tem to create a dataset of 10,000 images that they used to 
train the CNN DeepLab V3, which performed with an F1 
score of 0.81.

While these findings are promising, the majority of them 
use data that fails to capture the conditions of bridge 
inspections, which are typically characterized by extensive 
chaos and noise, e.g. with misleading objects in the image, 
such as vegetation or graffiti, and nonuniform lighting. 
Furthermore, they lack validation on datasets of actual 
bridges, i.e. field-collected datasets, and datasets collected by 
UAVs, which raises concerns about their generalizability 
across datasets and applicability in UAV-aided bridge 
inspections. The investigation by Forkan et al. (2022) high
lights this issue. While the algorithm by Atha and 
Jahanshahi (2018) performed with an F1 score of 0.96 on 
their dataset, which included photos of corrosion on ran
dom objects taken by handheld cameras, its performance 
dropped to an F1 score of 0.56 when applied to a dataset of 
images of telecommunications towers taken by UAVs. 
This study shows the need to subject deep learning method
ologies to rigorous testing across diverse datasets that 
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include the task at hand. For UAVs and automatic damage 
assessment methodologies to be valuable in bridge inspec
tions, they must be developed and tested with images of 
bridges within the actual inspection environment. Without 
such validation, these algorithms are likely to yield unreli
able or misleading results.

Additionally, image-based corrosion assessment methods 
fall short in providing subsurface information, which is cru
cial to consider when making informed decisions about 
bridge repair and reconstruction. Therefore, even if an 
image-based methodology performs flawlessly, inspectors 
must conduct further analysis to assess the severity and 
structural impact of corrosion. Considering this and based 
on the results presented in this study, the authors propose 
that the best approach for UAV-aided bridge inspections is 
as a ‘first-pass’ inspection. This involves using UAVs, paired 
with accurate and comprehensive defect detection and char
acterization, to conduct an initial assessment of a structure 
by segmenting all visible surface corrosion. This will deter
mine if the bridge needs further inspection. The method
ology is particularly aimed at detecting uniform surface 
corrosion and is not suitable for identifying corrosion 
located beneath the surface of the structure, such as corro
sion of rebar before concrete spalling. Figure 1 shows exam
ples of corrosion that can and cannot be detected using this 
approach. If damage is identified, a full inspection should be 
completed. However, in cases where no damage is detected, 
a full inspection becomes unnecessary.

The proposed approach can be applied to any bridge 
with exposed steel, even if it has been painted or metalized, 
but has been tested on simple span bridges with exposed 
steel girders and piles covered with green anti-corrosion 
paint. This approach is not applicable to reinforced concrete 
bridges, as it cannot detect corrosion of fully covered rebar. 
In the state of Georgia alone, there are 3,495 bridges with 
exposed steel for which this approach can be used (LTBP 
InfoBridge, n.d.). Each of these bridges requires inspection 
every two years, equating to over four inspections per day. 
In the USA, there are 171,163 bridges with exposed steel 
girders or piles to which this approach could be applied. By 
eliminating full inspections on bridges without damage, this 
methodology will save time and money for agencies and 
allow inspectors to dedicate more time and resources to 
evaluate the bridges that are critical.

3. Proposed methodology for a first-pass inspection

The proposed methodology consists of two major stages: 
data collection and image assessment. Data collection con
sists of image capture using UAVs at the bridge site and 
image labeling. Note that image labeling is included here as 
part of the evaluation process of the proposed algorithm. 
Images collected for new datasets, e.g. in applying the pro
posed methodology to inspection of a different bridge, do 
not need to be labeled. The image assessment stage consists 
of three steps: deep learning to remove the background of 
the images; image processing, including texture quantifica
tion and color space transformation, to create the input 

features for the algorithm; and unsupervised machine learn
ing to segment corrosion in the images.

Similar to the data labeling, these steps are shown as the 
description of the proposed algorithm. The algorithm can 
be automatically applied to new datasets without the need 
for further model training. It is proposed that this auto
mated approach to data analysis of UAV-collected imagery 
data will assist in creating efficient decision support for 
bridge inspections. The full proposed algorithm is shown in 
Figure 2. Each step is described in more detail in the sec
tions following.

3.1. Data collection and labeling

There are many UAVs available in the market that could be 
used for bridge inspections. For this application, the Skydio 
2þ Enterprise was used. This UAV was selected for its 
design features that assist with the bridge inspection process, 
including a vision-based obstacle avoidance system, 180- 
degree gimbal movement, automatic photo capture, and 3X 

Figure 1. (a) Corrosion that can be detected using this approach (from COCO 
bridge (Bianchi & Hebdon, 2021a)) and (b) spalling in concrete due to corrosion 
that cannot be detected using this approach (from (Choi et al., 2020)).
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zoom. Unlike most other models that use a Global- 
Positioning-System (GPS)-based obstacle avoidance system, 
the Skydio 2þ uses small cameras and therefore does not 
require a strong GPS signal to fly. This gives it the ability to 
collect data in more locations important for bridge inspec
tions, e.g. underneath a bridge, where a GPS signal may be 
weak. Additionally, the Skydio 2þ model can avoid 
obstacles with greater success than GPS-based models 
because it combines photometric information with scene 
understanding in real-time (Kesteloo, 2019). However, des
pite this obstacle avoidance system, as with other models, in 
practice and as found in the field, it is not capable of avoid
ing small obstacles that are difficult to see or distinguish 
such as thin wires or branches that often surround bridge 
sites.

The 180-degree gimbal movement allows the UAV to 
take perpendicular photos of the underside and overside of 
the bridge deck. The automatic image capture and 3X zoom 
makes it easier to capture high-quality images. All images 
collected using this UAV have a resolution of 4056� 3040 
pixels, and the automatic image capture feature allows 
inspectors to collect high-resolution images without pausing 
the flight, increasing the efficiency of the inspection (Tien & 
Herndon, 2023).

Although the UAV has a 3X zoom feature, not all the 
images in this dataset utilized it, resulting in some images 
with small regions of corrosion and low visibility. These 
images were retained in the dataset because they represent 
the kinds of images that may be captured using other 
UAVs, making it valuable to assess algorithm performance 
on them. However, the study also tested algorithm perform
ance after removing these less ideal images, to evaluate how 
the algorithms perform when more optimal images, i.e. 
more zoomed images with larger regions of corrosion, are 
used.

Data labeling was completed using the Computer Vision 
Annotation Tool (CVAT). CVAT is a free, open-source, 
web-based annotation tool that allows users to label data for 
all tasks of supervised machine learning (Sekachev et al., 
2020). For this inspection, polygon labels were used, which 
create a pixel-level label in the image and allow for corro
sion segmentation. These labels are recommended over 
bounding box labels because they provide information on 
the location and extent of corrosion in the image. In apply
ing the proposed methodology to a new dataset, such as 
imagery data for another bridge, the trained algorithm can 
be applied directly to the new dataset without creating new 
labels. In this study, the labels are used to evaluate the 

proposed methodology, but are not used to train the corro
sion segmentation algorithm.

3.2. Image processing to create input features of the 
algorithm

3.2.1. Texture
This step focuses on processing of the images to create 
input features of the algorithm based on characteristics spe
cific to corrosion. The surface roughness of steel is a telling 
visual feature of corrosion. Therefore, the texture in the 
image can be quantified to assess corrosion. In this work, 
values of entropy are used to quantify texture in the image 
with implementation using the skimage package in Python. 
First, because textural features are computed on single-layer 
images, the image is converted to greyscale. The grey level 
indicates the brightness of a pixel; for example, a grey level 
of zero means that the pixel absorbs all light and appears 
black (Khayatazad et al., 2022). Once the image is converted 
to greyscale, the histogram is equalized using skimage.expo
sure.equalize_hist to enhance the image’s contrast by 
spreading out the intensity range of the image. This facili
tates separating pixels based on greyscale values and there
fore texture quantification as well (Abdullah-Al-Wadud 
et al., 2007). This study finds that the performance of the 
texture-based assessment improves after histogram 
equalization.

Then, the entropy of the images is calculated with a 
radius of 5 using skimage.filters.rank.entropy. Entropy is a 
statistical measure of randomness, which measures the 
information or ‘surprise’ associated with a pixel being a cer
tain value. Equation (1) is used to compute the entropy of 
the pixels in an image, where H is the entropy of pixel X, 
p(x) is the probability that pixel X has intensity x, and n is 
the number of pixels in the specified surrounding region:

H Xð Þ ¼ −
Xn

i¼1
p xið Þlog pðxiÞ (1) 

A likely event has less entropy than an unlikely event. If 
a value is highly likely, it is not surprising and does not pro
vide researchers with as much information as an unlikely 
event. In the case of texture quantification, the event in 
question is the value of a pixel. In textured regions of the 
image, the likelihood of a pixel being a specific value is low, 
so the entropy in that region is high. Meanwhile, low 
entropy regions correspond to smooth regions of the image. 
The entropy values are normalized to be between 0 and 1 
before being input to the algorithm. Figure 3 presents the 

Figure 2. Proposed first-pass bridge inspection algorithm.
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original, greyscale, histogram-equalized, and entropy of an 
image from the dataset.

3.2.2. Color
Because corrosion on steel has a distinctive red-brown color, 
color is a potential feature that could be used to segment 
corrosion from visual imagery. However, an issue with color 
detection is that it depends on the illumination of the image 
in addition to the visual characteristics of the object 
(Khayatazad et al., 2022). Choosing an adequate color space 
can alleviate this problem and improve the use of color for 
corrosion assessment (Atha & Jahanshahi, 2018). In the 
standard red-green-blue (RGB) color space, colors are cre
ated by combining different values of red, green, and blue, 
with each pixel represented by three values ranging from 0 
to 255. When all three colors are at their maximum, the 
result is white, while zero values for all three colors produce 
black. Therefore, in this color space, white regions have 
high red values, which does not effectively address the illu
mination problem for corrosion segmentation.

The hue-saturation-value (HSV) color space has been 
developed to simulate how humans perceive color rather 
than combining three primary colors. The hue is the pri
mary channel and takes a value between 0 and 360. 
Saturation represents the ‘grey-ness’ of a color and takes a 
value between 0 and 1. Lastly, value represents the relative 
lightness of a color and varies between 0 and 1. In previous 
studies, corrosion was segmented with better accuracy in 
HSV images than in RGB images (Bondada et al., 2018; 
Petricca et al., 2016).

Lastly, the L�ab color separates the light (L�) values from 
the red-green (a) and blue-yellow (b) values, thus separating 
the lightness of a pixel from its chromaticity. This reduces 
the effects of varying or nonuniform lighting on the results 
of corrosion segmentation. The lightness values range from 
0 to 100, where a value of 0 corresponds to black and a 
value of 100 corresponds to white. In the a layer, negative 
values correspond to green and positive values correspond 
to red. In the b layer, negative values correspond to blue 
and positive values correspond to yellow. Previous studies 
have found corrosion to be segmented with better accuracy 
in L�ab images than in RGB and HSV images (Khayatazad 
et al., 2022). This work has found similar results; therefore, 
the L�ab color space is used in this study. The images were 
converted using skimage.color.rgb2lab. Figure 4 shows an 
image from the field-collected dataset in this study shown 
in the RGB (original), HSV, and L�ab color spaces.

3.3. Background removal

Initial processing on the images found that the background 
in this dataset is too chaotic to directly conduct image seg
mentation for corrosion. There is significant natural mater
ial in the background that resembles corrosion in texture 
and color, such as many textured thin brown branches. As a 
result, there are many false positives because corrosion is 
predicted to be in the background of the images rather than 
on the bridge. Therefore, it was determined that the back
ground needs to be removed from the images in this dataset 
before further processing and analysis.

In previous works, the background did not resemble cor
rosion as closely and did not produce as many false posi
tives. For example, the images were taken of pipes in 
industrial plants (Nash et al., 2022), where the background 
was blue sky or concrete, or taken by human inspectors and 
therefore closer to the bridge and the background was not 
shown (Khayatazad et al., 2022; Rahman et al., 2021). 
However, for UAV-assisted bridge inspections, with images 
taken by UAVs and in rural or vegetated areas with plants 
and foliage, the background is difficult to avoid completely 
and often closely resembles corrosion. Therefore, removing 
the background is a necessary step in the methodology to 
reduce false positives.

In this study, a pre-developed deep learning CNN archi
tecture fully convolutional network (FCN) trained on 
images in the dataset is used to remove the background. 
Although there are open-source background removal algo
rithms available, they are not trained on images of bridges 
and therefore do not perform well on the bridge inspection 
dataset. The PyTorch implementation of FCN was used to 
train the algorithm on the collected and labeled data. Once 
the algorithm is trained, it can remove the background from 
the images quickly and accurately. A perfect performance 
would be a mean-intersection-over-union (mIoU) of 1.00 
and a loss of 0.00. The final mIoU of this model was 0.925 
on the validation set and the final loss was 0.120. These 
results suggest that this model can remove the background 
from images of bridges well, albeit not perfectly.

In this methodology, the deep learning background 
removal method and a perfect case scenario using the 
ground truth labels are used. In practice, using the ground 
truth labels is not a practically implementable method to 
remove the background because it is equivalent to manually 
removing the background, decreasing the efficiency of the 
process. Here, this method is tested to explore how the algo
rithms may work on photogrammetry models or images 
as deep learning background removal algorithms become 
more robust and accurate through more diverse training. 

Figure 3. Color (a), greyscale (b), histogram-equalized (c), and entropy (d) of an image from the field-collected dataset.
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Figure 5 depicts an image from the dataset with the back
ground removed using the FCN and the ground truth label.

3.4. K-means algorithm

With the images processed and background removed, an 
unsupervised machine learning approach is used for corro
sion segmentation. The K-means algorithm is a standard 
unsupervised machine learning algorithm that is used to 
separate data into k different clusters through an iterative, 
converging process where each data point belongs to only 
one group (Na et al., 2010). This algorithm aims to make 
the intra-cluster points as similar as possible while keeping 
the clusters as different as possible. Because of the iterative 
and self-updating nature of the algorithm, it is potentially 
more accurate than simple thresholding using color or tex
ture values as in previous works for corrosion detection 
(Bonnin-Pascual & Ortiz, 2014; Petricca et al., 2016). In this 
work, the sci-kit learn implementation of K-means in 
Python was used. The similarity metric used was Euclidian 
distance E; defined in Equation (2), where x represents each 
data point, or in this case, each pixel in the image; k indi
cates the number of clusters; and Ci is the ith cluster:

E ¼
Xk

i¼1

X

x2Ci
x − xið Þ

2 (2) 

An additional challenge in assessing corrosion on bridges 
from UAV-collected images is that the data is often unbal
anced. That is, corrosion is often represented in a much 
smaller portion of the image compared to the non-corroded 
parts of the image. Unsupervised learning algorithms, such 
as K-means, can be better suited for unbalanced data 
because they do not use loss functions to find patterns in 

the data, but instead look at similarities of the input param
eters. For unbalanced data, the loss function can be mini
mized sufficiently without achieving the goal of the analysis. 
For example, in this field-collected dataset of bridge inspec
tions, on average around 2% of the pixels in a given image 
represent corrosion. A supervised learning algorithm can 
achieve a loss of 2% if the entire dataset is labeled as non- 
corrosion. This outcome does not serve to support assess
ment of corrosion on bridges. In addition, using an 
unsupervised learning algorithm means that inspectors can 
apply this methodology on new bridges without needing to 
label the data, which is a tedious and time-consuming task.

The images used in this study with the K-means algo
rithm had one layer of normalized entropy, one layer of 
normalized red-green values as in the L�ab color space, and 
one layer of normalized blue-yellow values as in the L�ab 
color space. Different values of k ranging from one to six 
were tested, and it was found that specifying k¼ 4 yields the 
best results for corrosion segmentation. The cluster with its 
center having the highest average values—that is, where a- 
chromaticity was the most red, b-chromaticity was the most 
yellow, and texture entropy was the highest—was identified 
as the cluster representing the corrosion class.

4. Application to field-collected bridge inspection 
data and results

4.1. Details of bridge geometry and environment

To train and evaluate the proposed algorithm, extensive 
field data was collected at bridges in two locations owned 
and operated by the Georgia Department of Transportation 
(GDOT) near Atlanta, Georgia, USA. One bridge is located 

Figure 4. RGB (a), HSV (b), and L�ab (c) representations of an image from the dataset.

Figure 5. Image from the dataset with the background intact (a), removed using FCN (b), and removed using the ground truth label (c).
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in Douglasville, Georgia, approximately 30 miles west of 
Atlanta, and the other is located in Calhoun, Georgia, 
approximately 70 miles northwest of Atlanta. The bridges 
have steel piles and girders with concrete abutments and 
decks. Both bridges were reported by GDOT to have corro
sion on the piles, and the bridge in Douglasville was 
reported to have corrosion on the girders (Tien & Herndon, 
2023).

Both bridges are located in rural areas, crossing creeks 
and surrounded by numerous trees and bushes, limiting 
where the UAV can fly and what sections of the bridge it 
can capture, and creating chaotic backgrounds for the 
images with many misleading objects. Figure 6 shows 
images captured at the bridge sites, highlighting the vegeta
tion, thin branches, and types of corrosion present in this 
dataset. This environment is characteristic of bridge inspec
tion conditions; for automatic or semi-automatic bridge 
inspections to be useful in the field, they must perform well 
in this type of environment. A total of 1,893 UAV-collected 
images were captured at these locations. A total of 767 
images were labeled using CVAT, with polygon labels to 
create pixel-level labels and allow for image segmentation. 
Labeled images were representative of the overall set of col
lected images.

4.2. Results

This section investigates the performance of the proposed 
approach for corrosion assessment in UAV-collected images 
of bridge inspections. Numerical performance on all datasets 
in shown in Table 1. After training the background removal 
algorithm, all steps of the algorithm were conducted on a 
Dell XPS computer with a 12th Generation IntelVR Core. 
Image loading, background removal, and conversion to the 
input parameters took approximately 10 min and training 
the K-means algorithm required approximately 11 min on 
this personal machine. The visual performance of K-means 
for corrosion segmentation on images with the background 
removed using FCN are shown in Figure 7.

As shown in Table 1, the methodology performs with 
good accuracy and mIoU, but it has low precision and 
recall. The mIoU is comparable with previous research, i.e. 
0.72 compared to 0.78 in Fondevik et al. (2020), but the 

Figure 6. Images captured at the bridge sites: (a) image captured in Douglasville, Georgia, with vegetation and thin branches present throughout. (b) Image of sur
face corrosion on a girder on the bridge in Douglasville. (c) Image captured in Calhoun, Georgia, with vegetation present throughout. (d) Image of surface corrosion 
on a pile of the bridge in Calhoun.

Table 1. Performance of the K-means algorithm on the various datasets.

Dataset mIoU Accuracy F1 score Precision Recall

UAV-Collected (FCN bg removal) 0.7834 0.7976 0.0951 0.0592 0.5129
UAV-Collected 0.7167 0.7244 0.1037 0.0612 0.7772
COCO Bridge 0.6008 0.6300 0.4491 0.3972 0.7274
Combined Dataset 0.6800 0.7336 0.2692 0.2167 0.7114
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recall is too low to be useful in bridge inspections. A recall 
of 0.51 suggests that 49% of corroded regions on the bridge 
would go unnoticed if this methodology were used in a 
bridge inspection. Ideally, the recall would be 1.0, particu
larly for bridge inspection applications where false negatives 
should be limited for the safety implications of missed areas 
of corrosion in inspections. Therefore, as is, this is not a 
viable method to aid in bridge inspections. To determine 
the performance of this methodology in a best-case scenario, 
the background of the images is removed using the ground 
truth labels before K-means clustering for segmentation. 
The visual performance of this method are shown in 
Figure 8.

The performance improves to varying degrees when the 
background is removed using the ground truth label. 
Importantly, the recall increases significantly, from 0.51 to 
0.77, or 50.1% percent. Surprisingly, however, the precision, 
accuracy, and mIoU decrease. This result is more surprising 

when inspecting the inferences visually because it appears 
that more of the image was correctly inferenced. This result 
could be influenced by several factors. Firstly, in situations 
with a class imbalance between labels, metrics might not 
accurately reflect the algorithm’s ability to correctly identify 
the minority class, which is corrosion in this case. 
Additionally, the ground truth label used for corrosion may 
have limitations or inaccuracies, such as inexact labeling of 
corrosion on the images at thresholds between corroded and 
uncorroded portions, which introduces errors into the algo
rithm and negatively impacts the performance metrics. 
Lastly, the complexity of the task itself can pose challenges 
for pixel-level segmentation metrics, which may not provide 
a holistic view of the algorithm’s performance because they 
focus on the classification of individual pixels rather than 
the overall semantic understanding of the image.

The accuracy and mIoU values are in the 0.7 range, with 
a slight decrease from the deep learning scenario to the 

Figure 7. Results of K-means with background removed using FCN (a) and the ground truth corrosion inference (b).

Figure 8. Results of K-means with background removed using the ground truth (a) and the ground truth corrosion inference (b).
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perfect case scenario. Ideally, these values would be higher, 
but they are close to the accepted human accuracy for seg
mentation in images, which is 0.8 (Nash et al., 2022) and 
the benchmark used in other segmentation research. 
Therefore, although the accuracy has decreased, the notable 
increase in recall and segmentation improvements by visual 
inspection suggest that as background removal improves, 
corrosion segmentation using K-means also improves.

To assess this algorithm’s generalizability across datasets, 
its performance was also assessed on the COCO Bridge 
dataset developed by Bianchi and Hebdon (2021a). The 
images, collected by human inspectors at the Virginia 
Department of Transportation (VDOT), are more ideal 
compared to the UAV-collected images. For comparison, 
the corrosion class comprises 21.0% of this dataset, com
pared to 1.7% in the original UAV-collected dataset. All lev
els of corrosion (good, fair, and poor) labeled in the COCO 
Bridge dataset are considered as corrosion for this study. 
The background was not removed from these images 
because the human-collected images in this dataset are less 
chaotic than UAV-collected ones. The performance metrics 
after converting the image to an entropy layer, a-layer, and 
b-layer, then using K-means to segment corrosion are 
shown in Table 1.

As shown, the proposed algorithm has a similar recall on 
this COCO Bridge dataset compared to the original UAV- 
collected dataset. The mIoU decreases slightly, suggesting 
that it is more difficult for the algorithm to segment the 
background class when it is less prominent. The most sig
nificant performance change is the precision, which 
increases from 0.0612 to 0.3972, subsequently raising the F1 
score to 0.4491. These results suggest that this methodol
ogy’s ability to segment all regions of corrosion, as repre
sented by the recall, remains relatively consistent across 
datasets. Additionally, in images with larger and clearer por
tions of corrosion, the algorithm’s ability to remove uncor
roded regions improves.

To further evaluate the proposed algorithm’s ability to 
perform on higher-quality UAV-captured images, particu
larly those with larger portions of corrosion, it was tested 
on a third dataset. This dataset consists of UAV images cap
tured according to best practices for UAV data collection 
found in this study combined with the COCO Bridge valid
ation dataset. The UAV best practices data collection guide
lines include taking photos in closer proximity to the bridge 
and making extensive use of the zoom feature to ensure 
high detail in the images and larger regions of corrosion. 
Images that did not meet these criteria were excluded from 
the dataset. The corrosion class comprises 10.7% of this 
dataset, almost 10 times that of the original UAV-collected 
dataset. This dataset provides an additional opportunity to 
assess the algorithm’s generalizability and evaluate its per
formance on UAV-collected images that are simultaneously 
representative of bridge inspection conditions in the field 
and more suitable for algorithmic inference.

Again, the recall remains consistent when this algorithm 
is applied to the third dataset, highlighting the robustness of 
the proposed methodology in segmenting all regions of 

corrosion during a first-pass bridge inspection across vari
ous conditions. While the precision is lower for this dataset 
than the COCO Bridge dataset, it is significantly higher 
than that for the original UAV-collected dataset. This 
improvement in precision further supports the idea that, in 
images with larger portions of corrosion, the algorithm’s 
ability to remove uncorroded regions improves, enhancing 
its overall performance in real-world scenarios.

For comparison, the state-of-the-art for corrosion seg
mentation is reported to achieve an F1 score of 0.96 (Zhou 
et al., 2022). However, this research uses images of crane 
structures, which are not surrounded by vegetation and 
therefore are not in environments representative of bridge 
inspections. The state-of-the art for corrosion segmentation 
on civil structures is reported to perform with a weighted 
F1 score of 0.88 (Bianchi & Hebdon, 2022). However, this 
methodology is not tested on images collected by UAVs, 
and are therefore likely to suffer decreases in performance 
when used on an external dataset as in other deep learning 
methodologies (Atha & Jahanshahi, 2018; Forkan et al., 
2022). Results of applying previously proposed high per
forming methods (i.e. a deep learning method with a 
reported F1 score of 0.88 in Bianchi and Hebdon (2022)) to 
the field-collected dataset of this study are presented in the 
following section. Results show the degradation in perform
ance when applied to external UAV-collected data from the 
field.

4.3. Comparison with other methods

The proposed algorithm for a first-pass bridge inspection is 
created based on the highest performing results compared 
to other computer vision methods including image process
ing techniques, such as texture thresholding and color 
thresholding, and deep learning approaches. These methods 
do not perform as well as K-means for various reasons. The 
following sections describe their varying limitations and 
demonstrate the challenges of adapting existing techniques 
from the literature to new external datasets.

4.3.1. Texture thresholding
To investigate texture quantification for corrosion assess
ment, two methods are investigated: entropy, as discussed in 
Section 3.2, and edge detection, also known as gradient 
operators. Edge detection methods use convolution filters to 
show where pixel values change rapidly. Textured portions 
have more pixel variation, and therefore have more edges 
than smooth ones. It was found that these two yield similar 
results, so entropy was selected in the proposed algorithm 
for its decreased computational burden.

Once the texture is quantified using entropy in the 
images, a threshold is used to segment the image. This 
threshold was determined by visual analysis. First, a group 
of four test images, which allowed complete and compre
hensive visual analysis of the images, were segmented using 
different entropy thresholds. In each image, ten thresholds 
at 10% intervals of the maximum entropy were used to see 
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at which threshold the corrosion was fully separated into 
one cluster. Visual analysis showed that a threshold of 65% 
of the maximum entropy resulted in the best segmentation 
of corrosion. Because of the foliage present at the data col
lection sites, a lot of texture is detected in the background 
of the image. To reduce the number of false positives and 
focus the corrosion inferences on the bridge, the back
ground is removed using an FCN and ground truth labels, 
as described in Section 2.3, and then entropy is used to seg
ment corrosion in the images.

This methodology (i.e. automated background removal 
and texture thresholding) works with high accuracy (0.8527) 
and mIoU (0.8390), but other metrics such as precision 
(0.0818) and recall (0.5050) are low. This is because the 
amount of corrosion in the images is small, so when the 
negative space is inferenced accurately, the overall accuracy 
is very high even if the corrosion is not inferenced well. On 
the COCO Bridge and combined datasets, these metrics 
improve, with recall surpassing 0.6 in both cases. However, 
this still does not reach the performance of K-means, nor is 
it sufficient for use in UAV-aided bridge inspections.

4.3.2. Color thresholding
Color thresholding was tested in three color spaces: Red- 
green-blue (RGB), hue-saturation-value (HSV), and light
ness-a-b (L�ab). To segment the images, the 25th and 75th 
percentiles of each layer were found, and then the distance 
between these percentiles and each pixel were calculated. If 
the values of a pixel were closer to the 25th percentile, that 
pixel was classified into the first cluster, and if the values 
were closer to the 75th percentile, the pixel was classified 
into the second cluster. This thresholding method is used to 
account for the fact that each pixel has multiple values, 
rather than in the texture scenario, where each pixel has 
only one.

In the RGB color space, color thresholding did not 
appear to segment corrosion in the images, but rather sepa
rated the light space from the shadows. In the HSV color 
space, to follow previous studies methodologies, the value 
layer is removed and the image is segmented using only the 
hue and saturation, which is supposed to reduce the impact 
of lighting (Bondada et al., 2018; Petricca et al., 2016). 
However, for the dataset in this study, this approach 
resulted in the image being segmented not for corrosion but 
based on grey areas and colorful areas. In the L�ab color 
space, the lightness layer is removed and the image is seg
mented based on the values in the color layers. This color 
space performs the best; the clusters appear to be separated 
by color rather than lightness or saturation and the cor
roded patches are more fully segmented into one cluster 
rather than being split between both of them. Therefore, the 
proposed methodology analyses images in the L�ab color 
space.

The color thresholding was also tested with the back
ground removed in an attempt to reduce false positives. 
However, as with texture thresholding, color thresholding 
on its own results in performance with high accuracy but 
low precision and recall. Again, this is possible because the 

majority of the image represents uncorroded areas. In the 
COCO Bridge and combined datasets, there are large 
improvements to precision and recall, but again, not to a 
level that is sufficient for the desired corrosion segmentation 
of this study.

4.3.3. Gaussian Mixture modeling
Gaussian Mixture Models (GMMs) are another standard 
unsupervised machine learning approach. GMMs assume 
that all data points are generated from a mixture of a finite 
number of Gaussian distributions with unknown parame
ters. The Gaussian parameters are estimated from the train
ing data using the iterative Expectation-Maximization (EM) 
algorithm (Reynolds, 2009). Although GMMs typically 
employ soft clustering—determining the probability that a 
point belongs to a cluster—this application uses hard clus
tering, where each point is assigned to the cluster with the 
highest probability. This approach is consistent with the 
other methods tested in this study, where each pixel belongs 
with certainty to one class. With the high performance of 
K-means, GMMs were also tested on the datasets to evaluate 
whether another clustering approach could yield improved 
results.

To facilitate comparison, the data was pre-processed in 
the same way as for the K-means algorithm, with one layer 
of normalized entropy, one layer of normalized red-green 
values as in the L�ab color space, and one layer of normal
ized blue-yellow values as in the L�ab color space. With the 
images processed and the background removed, the sci-kit 
learn implementation of GMM in Python was used. 
Different numbers of mixture components were tested, with 
performance improving until three components were used, 
beyond which the performance remained unchanged. Using 
three mixture components, GMM performed poorly on the 
UAV-collected dataset with a precision of 0.0241 and a 
recall of 0.2388. The performance improved on the other 
datasets, but not enough to be useful for bridge inspections.

4.3.4. Deep learning
Deep learning, requiring more computing power but less 
human intervention, has seen significant advancements in 
recent years. Convolutional neural networks (CNNs) and 
Vision Transformers (ViTs) have been used for image classi
fication and recognition (Sookpong et al., 2023; Yao et al., 
2019). The biggest advantage of deep learning is that feature 
extraction is included in the algorithm; as long as there are 
enough data samples, they learn the appropriate classifica
tion features that otherwise must be hand-engineered, as 
with the texture and color algorithms described above. The 
elimination of the need of prior knowledge and human 
effort, in addition to increased computing power, has led to 
a boom in research into CNNs (Atha & Jahanshahi, 2018).

However, deep learning algorithms, although they might 
have the same purpose (i.e. corrosion segmentation), are not 
yet generalizable for use across datasets. For example, a 
deep learning model recently developed to segment corro
sion in UAV-collected images was reported to segment 
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corrosion with an F1 score of 0.84 (Nash et al. (2022)). 
However, when this model was used to segment corrosion 
on the bridge inspection images in this study, the F1 score 
dropped to 0.24. If these algorithms are to be used on other 
datasets that they were not trained on, they need to be 
retrained (either completely or via transfer learning) on 
sample data from the environment in question. This 
requires additional labels, which are tedious to create. This 
section describes the results of CNNs and ViTs applied to 
the datasets of interest in this study.

4.3.4.1. CNN trained on site-specific data. First, an FCN 
was trained on the field-collected images of bridges from 
this study to test its ability to predict corrosion. The train
ing, validation, and inference were implemented in PyTorch 
using 8.5 GB of a graphics processing unit (GPU). After 
image augmentation, the size of the dataset was 5369, and 
the model was trained for 50 epochs with a batch size of 5 
and a learning rate of 1e-5. With these hyperparameters, 
training took seven hours to complete. Once training was 
complete, the model could infer on the dataset almost 
instantaneously. The final validation loss was 0.0963 and the 
final validation mIoU was 0.9253.

Although the FCN infers on the validation dataset with 
low loss and high IoU, closer inspection revealed that it did 
not segment corrosion in the images at all. In other words, 
it did not indicate where corrosion is present in the images. 
Because corrosion is a small portion of the image, the algo
rithm simply assumes there is no corrosion present on the 
bridge, resulting in high performance metrics, but not per
forming the task at hand.

4.3.4.2. CNN trained on site-specific data and COCO 
Bridge dataset. To combat the imbalances in the training 
data, the following deep learning techniques were trained on 
both the COCO Bridge dataset developed by Bianchi and 
Hebdon (2021a) and the UAV-collected data used in this 
study. Because the images in the COCO Bridge dataset con
tain larger portions of corrosion, combining the datasets 
was expected to make it more challenging for the algorithm 
to achieve low loss without segmenting corrosion. All multi
class labels of corrosion were considered as corrosion for 
this study. This resulted in a training dataset of 731 images, 
which were then augmented as in Bianchi and Hebdon 
(2022), increasing the training set size 3,655 images.

The DeepLabV3 (DLV3) algorithm was trained with the 
same hyperparameters as those used by Bianchi and 
Hebdon (2022), where it successfully segmented corrosion 
in human-collected images of bridges with a weighted F1 
score of 0.8860. These hyperparameters included a batch 
size of 2, 50 epochs, and a learning rate of 1e-5. The train
ing, validation, and inference were also implemented using 
PyTorch. After training, the final validation loss was 0.1207 
and the final validation mIoU was 0.5913. On the entire 
UAV-collected dataset, this approach performed with a 
lower recall than previously described methods (0.2559) but 
higher precision (0.3127), although both values are still low.

This model was then validated on the COCO Bridge 
dataset to compare it to the original performance. This 
evaluation yielded a binary F1 score of 0.5582, compared to 
Bianchi’s multiclass weighted F1 score of 0.8857. For a more 
direct comparison, the weighted F1 score was calculated to be 
0.8869. Finally, the dataset was tested on the combined 
COCO Bridge and best practices UAV-collected field dataset. 
On this dataset, the recall remains about the same at 0.5421, 
but the precision increases to 0.6688. However, given the 
variability in image quality during UAV-aided inspections 
and the model’s inability to consistently achieve high recall, 
K-means offers a more reliable solution for segmenting cor
rosion across datasets and inspection conditions.

4.3.4.3. ViT trained on site-specific data and COCO Bridge 
dataset. ViTs are an extension of the transformer architec
ture, originally developed for natural language processing 
tasks. ViTs adapt this architecture to computer vision by 
representing images as a sequence of patches and applying 
self-attention to learn relationships between them 
(Sookpong et al., 2023). Recently, these algorithms have 
emerged as potentially superior algorithms for segmentation, 
often outperforming CNNs in such tasks (Sookpong et al., 
2023). These methods were tested on the combined COCO 
Bridge and UAV-collected dataset. One ViT model was 
trained and tested without background removal to evaluate 
the algorithm’s ability to handle data without extensive pre- 
processing, while another was trained with background 
removal to explore potential improvements. The datasets 
were augmented to increase the training set size to 5,848 
images and both ViTs were trained with the same hyper
parameters, including a batch size of 5, a learning rate of 
1e-5, and 60 epochs. The model architecture used was ViT 
Base 16 (Wu et al., 2020).

The first ViT, trained on images without the background 
removed, performed with the lowest accuracy (0.6170) and 
F1 score (0.0115) of all methods tested. The second ViT, 
which was trained and tested on images with the back
ground removed, achieved a higher F1 score (0.0331). 
However, this algorithm’s performance varied significantly 
across datasets. On the COCO Bridge dataset, it achieved an 
F1 score of 0.5045 and a recall of 0.7211. On the dataset 
combined with UAV-collected images, however, the F1 
score dropped to 0.2462, with a recall of 0.3291. The first 
ViT performed consistently poorly across datasets, with F1 
scores below 0.1600 in all cases.

Table 2. Performance metrics of all investigated methods on the full UAV-col
lected dataset.

Method mIoU Accuracy F1 score Precision Recall

K-means 0.7167 0.7244 0.1037 0.0612 0.7772
Texture Thresholding 0.8390 0.8527 0.1236 0.0818 0.5050
Color Thresholding 0.8731 0.8874 0.0817 0.0564 0.2538
GMM 0.6125 0.7783 0.0438 0.0241 0.2388
FCN 0.9253 0.9037 0.0000 0.0000 0.0000
DLV3 0.5879 0.9883 0.2479 0.3127 0.2559
ViT (1) 0.6156 0.6170 0.0115 0.0076 0.3211
ViT (2) 0.9836 0.9837 0.0331 0.0692 0.0271
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4.3.5. Comparison of results
Table 2 summarizes the performance of all the methods 
tested to segment corrosion on the entire UAV-collected 
validation dataset. The top row provides the results of the 
proposed methodology using K-means in comparison to 
results using texture thresholding, color thresholding, FCN, 
DLV3, and ViT.

In a first-pass bridge inspection, the goal is to detect all 
corroded regions on the bridge without providing too many 
false positives. These goals are represented best in the recall 
and mIoU metrics, which measure the amount of corrosion 
that is correctly labeled as corrosion and the amount of 
overlap between the predicted segmentation and the ground 
truth segmentation, respectively. K-Means segmentation 
combined with robust background removal is able to seg
ment corrosion in these images with the highest recall, 
including achieving a recall two to three times higher than 
that of the best performing deep learning methods. Texture 
thresholding performs with the second highest recall, though 
the recall value of 0.51 indicates a large amount of corrosion 
is not identified. While K-means does not perform with an 
mIoU as high as values reported in previous research (Atha 
& Jahanshahi, 2018; Bonnin-Pascual & Ortiz, 2014; Petricca 
et al., 2016), the relatively high recall value of 0.78 is com
parable to the best performing prior studies and impor
tantly, is achieved on actual UAV-collected images of 
bridges from the field.

To investigate the algorithms’ generalizability and per
formance when applied to different datasets, these method
ologies were tested on the COCO Bridge dataset developed 
by Bianchi and Hebdon (2021a) as well. This dataset con
sists of human-collected photos and are more ideal (in 
terms of lighting and background, and with larger portions 
of visible corrosion) compared to UAV-collected images. To 
evaluate algorithm generalizability and provide a compari
son point on this widely used dataset, performance metrics 
across all investigated methods are shown in Table 3.

As shown in Table 3, the K-means algorithm has a com
parable performance on this dataset as on the UAV-col
lected one, with a recall above 0.7 and mIoU above 0.6. The 
precision increased from 0.0612 to 0.3972, increasing the F1 
score to 0.4491. When tested on this dataset, DLV3 and 
ViT(2) perform with higher F1 scores than K-means, with 
ViT(2) also having a comparable recall to K-means. These 
findings show the importance of capturing high-quality 
images—with appropriate lighting, proximity to the struc
ture, and large sections of visible corrosion—and that if 
these images are available, both K-means and ViTs may be 

well suited to aid in bridge inspections. However, such 
images may not always be available when using UAVs. 
Additionally, comparing the results from Tables 2 and 3
show that the K-means algorithm has impressive generaliz
ability across datasets and sees performance improvements, 
particularly in precision, if inspectors can make the effort to 
capture images with clear views of the bridge components 
under inspection.

To further evaluate the algorithms’ ability to perform on 
higher-quality UAV-captured images, a third dataset was 
used for validation. This dataset is the combination of UAV 
images captured according to best practices and the COCO 
Bridge validation dataset. The corrosion class comprises 
10.7% of this combined dataset (compared to 1.7% in the 
original UAV-collected dataset and 21.0% in the COCO 
Bridge dataset). This provides an opportunity to assess the 
algorithms’ generalizability and evaluate their performance 
on UAV-collected images that are more suitable for algo
rithmic inference. The performance metrics for this dataset 
across all investigated methods are summarized in Table 4.

Overall, the performance metrics for all algorithms 
improve compared to the initial UAV-collected dataset, but 
are generally worse than when evaluated on the COCO 
Bridge dataset only. The exception is DLV3, which achieves 
a high F1 score of 0.6019. However, this is accompanied by 
a recall that is still significantly lower than that of K-means, 
which continues to perform with the highest recall and is 
the only algorithm to achieve a recall above 0.7. This sug
gests that K-means is the most suitable for use in a first- 
pass inspection, where segmenting all corroded regions is 
more important than eliminating non-corroded regions. 
Additionally, the consistently high recall across datasets sug
gests that K-means is the most generalizable algorithm and 
the best suited for handling UAV-collected data. Despite the 
F1 score improvement, DLV3’s lower recall indicates that it 
is not effective for use in a first-pass inspection. ViT(2)’s 
performance drops on this dataset, with a recall of 0.3291 
and a precision of 0.2648, highlighting that even when best 
practices are followed during UAV photo collection, this 
algorithm struggles to handle these images effectively.

4.4. Advantages and limitations of the proposed 
methodology

One of the main advantages of the proposed approach is 
that it does not require training labels for corrosion. As K- 
means is an unsupervised learning algorithm, it separates 
corrosion from the rest of the image based on the image’s 

Table 3. Performance metrics of all investigated methods on COCO bridge 
dataset.

Method mIoU Accuracy F1 score Precision Recall

K-means 0.6008 0.6935 0.4491 0.3972 0.7274
Texture Thresholding 0.5740 0.6728 0.3823 0.3505 0.6382
Color Thresholding 0.6641 0.7605 0.4350 0.4944 0.5863
GMM 0.6205 0.6300 0.2394 0.2254 0.3385
FCN 0.6518 0.7899 0.0000 0.0000 0.0000
DLV3 0.6047 0.8586 0.5582 0.5753 0.5421
ViT (1) 0.5869 0.6271 0.1592 0.1833 0.2925
ViT (2) 0.7227 0.7932 0.5045 0.4406 0.7211

Table 4. Performance metrics of all investigated methods on the combined 
UAV and COCO dataset.

Method mIoU Accuracy F1 score Precision Recall

K-means 0.6800 0.7336 0.2692 0.2167 0.7114
Texture Thresholding 0.7178 0.7731 0.2742 0.2234 0.6116
Color Thresholding 0.7723 0.8271 0.2926 0.2642 0.4344
GMM 0.6552 0.6630 0.1308 0.1129 0.3146
FCN 0.8172 0.8930 0.0000 0.0000 0.0000
DLV3 0.6901 0.9795 0.6019 0.6688 0.5472
ViT (1) 0.6772 0.6951 0.0762 0.0840 0.2573
ViT (2) 0.8651 0.8948 0.2462 0.2648 0.3291
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characteristics. Therefore, bridge inspectors or agencies will 
not need to label corrosion in new inspection images to use 
this methodology, which is a tedious and time-consuming 
task. Additionally, as shown, this algorithm performs the 
most consistently across datasets, especially in achieving 
consistent recall, making it a reliable choice for detecting 
corrosion on external data. K-means is also better suited for 
unbalanced data—common in UAV-collected inspection 
images—compared to supervised learning algorithms. 
Finally, this algorithm does not require a large amount of 
computational power to predict corrosion. Once the back
ground is removed, which can also be done with low com
putational power after training, corrosion prediction can be 
done on most personal or organizational computational 
systems.

The primary disadvantage of the proposed methodology 
is that using K-means for segmentation is better suited for 
images with larger portions of corrosion. This is shown in 
the increase in precision as the proportion of corrosion in 
the image grows. The algorithm does not work on images 
where there is no corrosion present because it will always 
segment a portion of the image as corroded. A process may 
need to be implemented to mitigate this to reduce the num
ber of potential false positives. However, because recall 
remains consistent across datasets, K-means is still the best 
option for images with small portions of corrosion among 
the algorithms tested in this study.

4.5. Enhancing the proposed methodology

While the results of the proposed methodology support its 
use in a first-pass bridge inspection, there are opportunities 
to enhance the proposed approach. A possible modification 
is to use a classification algorithm to determine if there is 
corrosion present in the image before it is analyzed by K- 
means for segmentation. Then, all of the images that enter 
the algorithm will have some level of corrosion for cluster
ing, helping to reduce the number of false positives in the 
output. The algorithm can also be paired with other 
machine learning techniques, such as SVM or decision trees 
as used in Son et al. (2014). Pairing different algorithms has 
been found to improve the performance of both algorithms 
in a study by Bonnin-Pascual and Ortiz (2014) and may be 
able to reduce the number of false positives.

Another alteration to improve this methodology could be 
adjusting the input parameters for the algorithm. In this 
methodology, the input features were entropy and the a and 
b layers from the L�ab color space. Other methods to quan
tify the texture, such as the Grey-Level Co-occurrence 
Matrix (GLCM), dissimilarity, or homogeneity as used in 
the study by Khayatazad et al. (2022), could be tested. 
Additionally, multiple texture or color features could be 
used, rather than just one of each.

It is important to note that this methodology segments 
corrosion and evaluates the results at the pixel level. While 
this enables precise results and quantification of perform
ance, this may be a more demanding task than is needed 
for a first-pass bridge inspection. For example, one pixel 

labeled as corrosion surrounded by uncorroded pixels would 
not be critical for a bridge inspector to identify because cor
rosion is expected to occur over larger regions than a single 
pixel. A potential modification to the approach could be to 
use a bounding box algorithm, such as YOLO V3 used by 
Zhou et al. (2022), to localize corrosion in the images. 
However, these algorithms would be subject to the same 
limitations as other deep learning algorithms, including 
potentially low generalizability and training difficulty on 
unbalanced data. Additionally, as this method would localize 
corrosion but not segment it, K-means could then be used 
to quantify the corrosion in the bounding boxes to deter
mine if an inspector needs to conduct a full bridge 
inspection.

5. Conclusions

This study investigates image-based corrosion assessment 
methodologies to create a novel first-pass bridge inspection 
algorithm. The algorithm includes background removal 
using FCN, image processing to obtain texture and chroma
ticity features, and unsupervised K-means to perform corro
sion segmentation. In this methodology, the entropy and a 
and b color channels from the L�ab color space are used as 
inputs for the K-means algorithm. The methodology per
forms with a recall of 0.78 and an mIoU of 0.72.

The authors use UAV-captured images of bridges near 
Atlanta, Georgia, USA to create a dataset that is representa
tive of bridge inspection conditions. This dataset contains 
chaos in the images and features several environmental ele
ments (e.g. thin branches, wires, hives) that mimic corrosion 
in texture and color, which presents challenges for many 
algorithms. The proposed algorithm is tested on this dataset 
to reveal its applicability to data that is collected by UAVs 
in the field, the COCO Bridge dataset developed by Bianchi 
and Hebdon (2021a) to reveal its generalizability across 
datasets, and on a combined dataset of COCO Bridge and 
UAV images collected using best practices to assess its per
formance on higher-quality UAV-collected images. Results 
illustrate how growing UAV, computer vision, and machine 
learning technologies could best be integrated into bridge 
inspections as an initial corrosion assessment to determine 
if a bridge needs further inspection. Different computer 
vision and deep learning algorithms are also investigated, 
but yield worse results, showing that deep learning methods, 
even high performing ones, cannot simply be taken from 
previous research and applied to bridge inspection data.

This study presents an innovative approach to be used as 
an initial bridge inspection and compares alternative corro
sion assessment algorithms applied to the same dataset. 
However, no technique as of yet works perfectly, and there 
is room for further improvement in the algorithms investi
gated in this study to perform at a level high enough to be 
directly used in bridge inspections. Although manual inspec
tions remain essential for a comprehensive assessment of 
bridge conditions, a reliable corrosion detection and local
ization algorithm could significantly reduce the number of 
full inspections conducted on structurally sound bridges. 
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This will enable agencies to increase the time and resource 
efficiency, while improving safety, of bridge inspections.
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