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Abstract: The effectiveness of infrastructure resilience relies on the seamless extraction of information, timely acquisition of critical
knowledge, and heightened situational awareness. The ongoing utilization of digital citizen communication through social media with
response organizations during disasters remains a valuable avenue for disseminating information, ensuring the effective utilization of public
resources in emergency response to crisis events. Public agencies can use this information to examine community sentiments and discussions
to assess, determine, and prioritize critical areas in need of assistance. However, there are limitations on harnessing precise geolocation
information from social media, as well as a lack of mitigating bias of machine learning models used during such events. These limitations
can restrict emergency management personnel’s ability to locate and promptly delineate actionable insights. Here, we propose a semisu-
pervised machine learning model that utilizes approaches such as transfer learning, topic modeling (i.e., Latent Dirichlet Allocation), and
natural language processing to augment data from historical and current social media posts (i.e., Twitter) with community-driven application
alerts (i.e., Waze) to achieve further evidence on the location and context of emergency events. The model is designed to also mitigate
machine learning bias using the Wells–Du Bois protocol. A framework was developed for this process and is illustrated through a case
study on Hurricane Ian and three previous hurricanes that occurred in Florida. This fusion provides increased situational awareness and
may enhance the speed of emergency response. This study establishes a foundation for equitable, real-time crisis event detection, expanding
organizations’ response capacity in allocating resources and reducing harmful effects of disaster, particularly within public infrastructure
systems. DOI: 10.1061/JMENEA.MEENG-6208. © 2024 American Society of Civil Engineers.

Introduction

In emergency response situations, the significance of public infra-
structure systems is paramount, serving as a fundamental resource
for the efficient and effective management of disasters. This includes
response and communication systems for disseminating information
and locating those in need. Enhancements to emergency manage-
ment systems are imperative to improve response execution and

better serve society. The record-breaking 2004 and 2005 hurricane
seasons (e.g., Hurricanes Ivan, Katrina, Rita, etc.) exposed short-
comings in emergency management, especially in federal response
capabilities (Schmidtlein et al. 2008). When a natural disaster event
is deemed so severe that it exceeds the ability of both state and local
governments to respond, the Federal Emergency Management
Agency (FEMA) issues it as a major disaster declaration; however,
there is no set definition of what “beyond the combined capabilities
of state and local governments to respond” means in order to re-
ceive assistance (FEMA 2023c). Thus, subjective judgments have
the potential to shape the outcome of declarations and resource
allocation. In the majority of cases, before requesting a disaster
declaration to receive aid, state and local officials must conduct
a damage assessment. With this, emergency management respond-
ers can face challenges in providing immediate intervention and
relief for ongoing disasters as they await the assessment and dec-
laration of a crisis event. Many areas are underserved by this pro-
cess, resulting in inequities with distribution of aid (Schmidtlein
et al. 2008). Before necessary federal assistance is given, state and
local emergency management personnel need to make decisions on
potential resources needed to mitigate the effects of disasters, es-
pecially when there is little time to decide or they must wait for a
drawn-out damage assessment. There needs to be alternative sys-
tems in place that can adequately and quickly assess community
needs when hazardous events occur that can pose a significant
threat to communities and hinder relief endeavors. There is also
a need for emergency management personnel to have more effec-
tive communication with citizens during a disaster through a tool or
interface such as social media (Lovari and Bowen 2019). This is
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where both social media and community-driven applications can
further assist with identifying major disasters as they occur and
potentially speeding up the process of receiving assistance through
enhanced context of community needs.

Utilizing social media for natural disaster assessment continues
to trend in research studies since social media platforms, such as
Twitter, first emerged in 2006 and gained increased popularity
(Wu and Cui 2018). Twitter is one of the world’s largest social
media platforms, having more than 368 million active users as of
December 2022 (Tankovska 2022). Social media can be used for a
multitude of activities and initiatives. As it pertains to disaster risk
reduction, social media can be used in crisis response to serve as a
listening function, to track events, for emergency planning and
management, to foster connectedness and volunteering, to promote
causes to raise donations or funds for those affected by disasters,
and for academic research (Alexander 2014). Social media users
can express their worry, relief, and other sentiments on such plat-
forms during a disaster or interact with various community mem-
bers and stakeholders to share information. It is common during
natural disaster events that affected citizens turn to social media
for relevant updates, along with seeking help from other individuals
or professional organizations during all phases of the disaster cycle
(Roy et al. 2020), as social media is faster than “traditional” news
outlets for the dissemination of information (Wu and Cui 2018).
Social media platforms have the ability to extract pertinent infor-
mation through crowdsourcing, benefiting emergency manage-
ment agencies’ protocols and practices when this knowledge is
analyzed and modeled for detection, prediction, and other aspects
of emergency management. Social media can be integrated into
the emergency management process, particularly when it comes
to decision-making and assessing damages for major disaster
declarations.

Platforms such as Twitter are social applications, whereas a
community-driven application, as we define it, is a platform that
seeks input from users for a particular situation or circumstance.
Both types of platforms engage members of society, but social
applications allow more creativity with content to build a unique
network while community-driven applications result in more of
a targeted network to share information.Waze, a popular community-
driven navigation application, is used by more than 151 million
monthly active users across the globe as of December 2022 (Smith
2023) and employed in operations by US State Departments of
Transportation (DOTs), collecting hundreds of thousands of high
frequency data pertaining to traffic and incident events a day for
a given state. Some US State DOTs are using Waze data to en-
hance current communication systems already in place (Eastern
Transportation Coalition 2017). However, there is a need for
augmented systems to be developed and deployed, as currently
Waze data is typically input either in parallel with other systems
or by itself into DOT feeds. The lack of integration of Waze
and other communication systems reveals a gap where Waze data
can be merged with an outside source, such as social media data,
which is already popularly used in disaster research, to increase
situational awareness and aid decision-making. Community-driven
applications such as Waze can address select shortcomings that
most social media platforms currently possess, regarding lacking
interactive features where users can send reports and update other
community members specifically on certain harmful events through
preestablished categories. Waze also has more precise location data
and interactive geographical visualizations.

Social media, however, adds the community individual voice
and sentiment of users that Waze lacks. It has also been revealed
that despite platforms to aid disaster management using social
media data, few are designed for citizen connectedness or use both

social media and another platform (i.e., different type of input
data such as community-driven applications) (Chair et al. 2019).
In essence, Waze enhances Twitter with the higher volume of more
precise coordinates related to events beyond the bounding box
Twitter provides with its current API, while Twitter enhances Waze
with adding more context to the categorized alert types (e.g., a
Waze alert deemed “accident”when paired with a tweet in the same
area could potentially show how many cars are involved, if some-
one was seriously injured or needs help, and possibly images
related to the event). Thus, the two data streams complement one
another. When information provided by active users on public plat-
forms during crises is tagged with geolocation, it aids emergency
responders in determining where people are located, evaluating
community needs, and providing alerts and warnings to both
citizens and first responders in regard to changing environments
(Lindsay 2011). Georeferenced posts can strengthen situational
awareness and aid in the four phases of emergency management
(mitigation, preparedness, response, and recovery) by allowing
agency officials to gauge and track community reactions and opin-
ions in real time related to a disaster.

As social media continues to play a significant role in disaster
studies and machine learning methods become more integrated into
various societal operations, the imperative to develop or deploy
strategies that effectively serve populations accessing and utilizing
social media during crisis events is crucial. With this comes the
growing concern over machine learning bias inherent in computa-
tional models intended for societal implementation. A transforma-
tive shift is underway in research, urging the normalization of
equity-centered tools and approaches (e.g., bias mitigation strate-
gies) within respective scientific domains when employing machine
learning techniques (Bozeman 2024). While the effects of existing
data analytics approaches and the fairness these techniques have on
vulnerable and underserved populations during disasters remain
relatively understudied (Yang et al. 2020), there are emerging
approaches, such as qualitative measures to mindfully construct
machine learning models (Monroe-White and Lecy 2022), that are
promising. Incorporating these measures into study design and
execution is paramount. Adhering to scholarly-based bias mitigating
protocols can help bridge the knowledge gap concerning equitable
measures in disaster informatics, thereby advancing our under-
standing in this domain. Therefore, the consideration of bias issues
in social media data and computational models is relevant to our
study, as we strive to align with this paradigm shift by designing
and executing our research with these considerations at the fore-
front. To achieve augmented emergency management capacities
with platforms such as Twitter and Waze, it is pertinent to under-
stand past research that has been conducted on the use of historical
data to enhance data sets, social media as a social sensor, the fusion
of different data sets for natural hazards and disasters, and mitigat-
ing machine learning biases.

Related Research

Use of Historical Data

Historical data can be used to provide additional content or back-
ground knowledge on a particular problem or generate more robust
models when trained on a previous event for tasks such as simu-
lations of current or future events. The machine learning concept of
transfer learning makes the use of past data easily capable of being
integrated into prediction models, typically in situations where data
is scarce or limited, as it is the ability of a system to provide the
knowledge of the domain it is trained on (i.e., the source) to another
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domain (i.e., the target) (Neyshabur et al. 2020). The use of a
pretrained model on historical data for transfer learning is seen
across various infrastructure research areas such as in the energy
sector for models that have limited energy related data (e.g., wind
power production) (Hooshmand and Sharma 2019) and to infer en-
ergy consumption and demand for buildings (Peirelinck et al. 2022;
Ribeiro et al. 2018). Other infrastructure areas where this approach
is used include smart city applications such as activity recognition
and building dynamics (Pinto et al. 2022) and transportation for
GPS record estimation on speeding (Yu 2019).

As it pertains to emergency events, Halse et al. (2019) generated
a simulator system that emulates real-time tweets from previous
tweets based on their temporality with a crisis event. This was
designed to replace collecting tweets directly from Twitter. The
authors showed that historical tweets can be used for predicting
current events and noted a recommendation that custom filtering
should be used for training purposes (Halse et al. 2019). Other
studies have made use of historical data for natural disasters
through scenarios such as remote sensing for flooding (Pollard
et al. 2018; Qi et al. 2009), predicting earthquakes (Yuen et al.
2005), and emergency management for validation of emergency
vehicle travel times (Henchey et al. 2014) and decision-making
(Romanowski et al. 2015). Nevertheless, there is still a need to
investigate further how historical data collection can enhance
detection and assistance for emergency management, especially for
systems tailored for real-time events.

Twitter as a Social Sensor

Infrastructure (e.g., bridges, power systems, etc.) can have physical
sensors tomonitor or detect damage, but social sensors (e.g., Twitter)
have been shown to detect events where physical sensors are lack-
ing, such as providing detailed information about the failure (Tien
et al. 2016). Twitter posts (i.e., tweets) can include information
such as images and text descriptions, replies, retweets, favorites,
and geographical metadata about where the user posted. Currently,
about 1%–2% of tweets are geotagged, and location information
can be either a precise location or a Twitter “place” (e.g., bounding
box) (Twitter Developer Platform 2023). While this can be made
useful in crisis situations, it is challenging to extract relevant
information to assess and gain actionable insights with precise
coordinates. Other typical challenges when dealing with social
media pertain to trust, privacy, volume of data, availability of geo-
tagged posts, and “rumors” or fake news that spread when people
misuse social media (Rossi et al. 2018).

Social media platforms, like Twitter, have been used in a wide
range of ways in the field of civil engineering. Social media analy-
sis has been used to enhance traffic conditions (Athuraliya et al.
2015; Sujon and Dai 2021), detect emergency events via natural
language processing (NLP) (Verma et al. 2011; Wang and Taylor
2019), analyze its use in construction operations (Tang et al. 2017;
Azhar et al. 2019), and determine disaster-related impact assess-
ments on the built environment (Chen et al. 2020; Fan et al. 2020;
Chen and Ji 2021). Also, social media has been used to study
human mobility by identifying city-scale patterns (Wang and
Taylor 2016), user polarity of sentiments (Wang and Taylor
2018), and urban-level spatiotemporal energy demand predic-
tion (Mohammadi and Taylor 2017). The use of social media in-
tegrated into other systems can improve situational awareness
through augmenting communications and informing decision
makers on resources and aid needed in affected areas (Yin et al.
2012).

Additionally, Twitter with community-driven applications has
been used in research involving the Waze navigation application

to examine real-time traffic flow data from Waze in comparison
to Twitter data congestion (Sidauruk 2018). Twitter has been shown
to be less reliable in comparison to other crowdsourced data feeds
(Amin-Naseri et al. 2018) in terms of fewer tweets being made at
night versus during the day, most being during peak traffic hours,
and, while covering arterials well, most tweets coming from the
center of a city (i.e., providing less coverage from outside areas)
(Gu et al. 2016). Twitter data will continue to be used in various
fields for analysis and detection within communities; however, the
number of tweets during a disaster can fluctuate depending on the
disaster and how engaged community members are on the platform.
There are also cases where tweets relevant to a disaster are smaller
in volume than expected, necessitating more data points to be in-
gested into a model for further community perspective (Salley et al.
2022). This requires augmenting social media data sets with app-
lications that are more equipped for real-time event detection
(e.g., Waze), which social media largely lacks. While social media
still holds potential for enhancing actions taken in emergency
management phases to better protect people, property, and the envi-
ronment during crisis events, it underscores the need for further
research to explore the interdependencies of different systems
and address gaps in data integration and analysis to further harness
its capabilities.

Fusing Data for Natural Disasters

Data integration is critical for timely and effective crisis informa-
tion collection and communication, data analysis, and emergency
personnel decision-making for disasters; however, data integration
can be a challenging task (Peng et al. 2011). Within the field of
disaster informatics, established research has highlighted signifi-
cant challenges pertaining to data integration (Ogie and Verstaevel
2020). Purohit et al. (2019) have identified three specific challenges
associated with the integration of open-source data for disaster
management. These challenges include the heterogeneity of data
sources, where the diverse formats of multiple data sources can
make merging difficult; the inconsistency of data sources, which
results from different words or semantics used across data sources,
making the establishment of an interpretable structure challenging;
and the incompleteness of data sources, characterized by the
scarcity of data or the lack of relevant information (Purohit et al.
2019).

Researchers have initiated efforts to tackle these challenges by
devising data fusion methodologies. Some approaches aim to
merge data from various sources to assess earthquake impacts,
incorporating damage data from forecasts and remote sensing with
field measurements (Loos et al. 2020, 2022). Additionally, they
have been applied in situations such as the assessment of damage
caused by Hurricane Matthew, where unmanned aerial vehicles
(UAVs) and social media data, such as tweets, were integrated
(Yuan and Liu 2018). Moreover, these fusion techniques have
been employed in urban analytics by combining sensor data
and social data (Psyllidis et al. 2015). With research emphasizing
the intricate nature of data integration in disaster management,
there is a continuous need for thoughtful solutions to address
them effectively. Research also highlights the importance of ap-
proaching data integration responsibly by collecting “good data”
(e.g., data that has quality content, truthful, etc.) that is unbiased
(Nargesian et al. 2022). While integrating different data sets can
help alleviate potential biases, it remains essential to mitigate
bias through the implementation of some set of standards or
well-defined parameters to ensure reliable computations (Albahri
et al. 2023).
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Mitigating Machine Learning Bias

Studies have shown how race, social class, and/or placement play a
role in populations experiencing social and environmental in-
justices related to hazards and disasters (Adeola and Picou 2017;
Bodenreider et al. 2019; Griego et al. 2020; Hamideh and
Rongerude 2018; Nejat et al. 2022; Wright 2011). With the grow-
ing integration of machine learning into social decision-making and
everyday routines, such as emergency management, there has been
a call to control and/or assess fairness in computational efforts to
avoid the risk of exacerbating bias. There is no consensus or wide-
spread agreed upon definition of “fairness” as it pertains to bias and
equity in machine learning; how fairness is determined depends on
the research question and situation it is applied to. This paper
defines fairness as the act of addressing bias with the objective
of diminishing the potential adverse consequences upon societal
integration. Research has established three ways to quantitatively
perform bias mitigation before, during, and after model execution:
in the training data, while training machine learning models, and on
trained machine learning models (Hort et al. 2022). Previous
research has investigated fairness through approaches such as fair-
ness testing algorithms (i.e., inconsistencies between existing and
mandated fairness requirements of a software); these are typically
binary and divide the population into privileged and unprivileged
based on a sensitive attribute that protects against unfairness such
as age, race, gender, etc. (Chen et al. 2022). Issues with this type
of quantitative testing include that it relies on sensitive attributes
when in practice that information may not be available in a data
set (Awasthi et al. 2021). For instance, Twitter does not provide
such demographic information from its users to researchers. Addi-
tionally, studies report that current fairness algorithms and metrics
cannot handle multiclass and nonbinary problems (Hort et al.
2022). Therefore, if your data set does not have sensitive attribute
data or has more than two labels, current models that assess fairness
would not be adequate.

Critiques have surfaced asserting that quantitative research
undervalues equity, and, when confronted with equity shortcom-
ings, statistical measures are employed to defend the validity of
such an analysis (Gillborn et al. 2018). However, with fairness
testing there is no guarantee or empirical evidence demonstrating
its applicability or effectiveness in real-life scenarios (Chen et al.
2022). Researchers further expose that the report of low bias scores
using such quantitative approaches does not automatically equate
to actual fair application of models (Hort et al. 2022). Social sci-
entists strongly argue for the imperative of combining machine
learning models with a qualitative approach to thoroughly assess
bias mitigation efforts (Monroe-White and Lecy 2022). Protocols
such as the Wells–Du Bois protocol for machine learning biases
could be deployed to overcome systemic inequities ingrained in
data sets which historically sought to oppress marginalized com-
munities (Monroe-White and Lecy 2022). Use of intentionally
building machine learning models with qualitative protocols is a
promising alternative for the limitations and discrepancies within
current algorithms for bias control.

This study addresses three research gaps: (1) for social media
analysis methods, integration with community-driven applications
that may improve capture of incidents relating to emergency prepa-
ration and response (Chair et al. 2019) with historical data; (2) cre-
ating a method to effectively augment location-specific social
media data with community data to address the shortcomings that
exist in the ability to more rapidly, and effectively, communicate
and respond to crisis events (Lovari and Bowen 2019; Purohit
et al. 2019); and (3) incorporating equity-based practices to miti-
gate machine learning bias (Yang et al. 2020; Monroe-White and

Lecy 2022). Our overarching research objective is to integrate these
streams while remaining vigilant about potential biases inherent in
machine learning within the disaster management context. We will
delve deeper into this topic in the subsequent sections, particularly
in the articulation of our research question and the remaining dis-
cussion in the paper. While the high-level contribution of this study
lies in its ability to enhance situational awareness and facilitate the
optimized allocation of resources for emergency management ef-
forts, its impact extends to both methodological and engineering
management realms. Methodologically, this study advances tech-
nical approaches for integrating and harmonizing disaster-related
big geo-data and extracting critical semantic information essential
for communities or emergency responders. This progress is
achieved through a novel and reproducible framework curated with
bias mitigation in mind, leveraging multiple machine learning tech-
niques such as transfer learning and semisupervised learning to
merge complementary data sets. From an engineering management
standpoint, the framework serves as a valuable tool for enhancing
community safety and resilience during disasters. Specifically, for
DOTs, it offers support for management operations by providing a
user-friendly visual interface that aids in prioritizing resources and
addressing issues on the state highway system more efficiently. Un-
like current setups, which can require operators to navigate through
multiple tabs or channels, this streamlined approach consolidates
relevant data, advancing the knowledge boundary and offering a
comprehensive solution to improve overall safety and resilience.

Intervening and alleviating disasters as they occur in real-time
poses an issue for many emergency responders. Again, before nec-
essary federal assistance is given, state and local emergency man-
agement personnel need to make decisions to prepare and respond
to disasters to mitigate their effects with available resources. This
can be facilitated through a more community focused, equitable
approach to better understand local needs of citizens and engaging
with community discussions that are occurring. To address the
aforementioned gaps and research objective, we investigated the
following research question:

What is the impact of integrating social media with community-
driven applications for the capture of incidents related to emer-
gency management, mitigating machine learning bias, and validat-
ing its respective effectiveness (e.g., accuracy)?

In the following sections, we introduce a framework that as-
sesses community needs and provides context for emergency
responders using machine learning techniques to train the model
on previous events and fuse data from the social media platform
Twitter and the community-driven application Waze. We also mit-
igate machine learning bias of the framework using an equity-
based protocol to show how our methodology integrated equity
measures. We anticipate that this machine learning-enabled frame-
work can enhance event detection, provide further situational aware-
ness about an emergency event, and thus improve emergency
response.

Machine Learning-Enabled Framework

The scope of this framework is twofold: (1) use historical data to
develop a robust model and incorporate more community insights;
and (2) perform data integration across social media and community-
driven platforms at the community scale. The reason this study is at
the community scale (i.e., neighborhood to city scale) is to corre-
spond to the bounding box locations of Twitter, which will be
explained in more detail later. To achieve these aims, we fused
Twitter and Waze data and propose machine learning approaches
and spatiotemporal data fusion that utilizes labeling from transfer
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learning for Twitter and Waze data sets related to natural “disas-
ters.” Fig. 1 illustrates the overall framework developed for the
integrated approach with the goal of augmenting georeferenced
social media data (i.e., Twitter) with corresponding data from a
community-driven application (i.e., Waze). The framework overall
utilizes the techniques of transfer learning, NLP, Latent Dirichlet
Allocation (LDA), semisupervised learning (SSL), and spatial fu-
sion to produce the output of an augmented data set that classifies
each Twitter and Waze pairing to elucidate community conversa-
tions and issues. In Fig. 1, the source domain model is the com-
ponent projected up and to the right from the transfer learning
box, which produces the output of labels. The rest of the process
occurs in the target domain model, which produces the output of a
map of community needs. The following sections will explain in
further detail the workflow of the framework outlined in Fig. 1.

The evident biases of social media data should not discourage
efforts to mitigate biases in models that utilize this data. Even if
acceptable metrics in terms of precision, recall, and F1 score are
achieved, it remains essential to assess the potential impacts of this
work in practice through recognizing biases. The Wells–Du Bois
protocol is a tool designed to assess whether research qualitatively
achieves a baseline level of bias mitigation in social scientific re-
search for neutral data collection and machine learning execution. It
consists of three dimensions and seven items: bad data—(1) inad-
equate data and (2) tendentious data; algorithmic bias—(3) harms
of identity proxy, (4) harms of subpopulation difference, and
(5) harms of misfit models; and human intent—(6) do no harm
and (7) harms of ignorance (Monroe-White and Lecy 2022). In this
study, these items were viewed through the domain of utilizing so-
cial media in emergency management. Detailed information regard-
ing each item and the corresponding steps undertaken in this study
to assess the fulfillment of the specified standard is provided in a
later section. In the following sections, we outline the methods

employed with simultaneous detail provided on how we integrated
example data from a case study to illustrate the framework.

Source Domain Model

Historical Data Collection
To enhance the presence of the community’s perspective, we incor-
porated historical data into our framework. We analyzed different
major disasters of the same type (i.e., hurricanes) to track senti-
ments over time and to capture different communities who may
have been engaged for one disaster but not another. The assumption
posits that within the historical events under examination, varying
geographical regions or demographic groups will be represented, as
each catastrophic event impacts distinct audiences. Historical data
were collected in the form of 43,416 tweets from three hurricanes
that occurred in Florida in 2020: Hurricane Eta (November 7, 2020,
through November 12, 2020), Hurricane Isaias (July 31, 2020,
through August 4, 2020), and Hurricane Sally (September 14,
2020, through September 28, 2020) (FEMA 2023a).

Filtering
In this process, tweets in the state of Florida were extracted and
filtered based on location and keywords in the form of a disaster-
based glossary we developed (see Table 1). Past studies have shown
that the use of hashtags can limit the number of irrelevant tweets
(Brunila et al. 2021). However, in this case the quality of data with
hashtags was not sufficient; therefore restricted keywords were de-
termined to be used after several tests were run and analyzed using
one or the other (or both). Hashtags are also constantly changing
and evolving. Therefore, for the model to be more generalizable
the decision was made to use only keywords. Hence, we created a
disaster-based glossary of common words related to natural
disasters that could indicate a crisis event. The disaster-based word

Fig. 1. High-level framework for georeferenced data fusion (Twitter and Waze) workflow, including the process for transfer learning. The transfer
learning process leverages pre-existing knowledge, which in this case is derived from historical tweets, to create the source model. Subsequently, the
source model is trained and integrated into another domain, referred to as the target model. Here, the domain knowledge from the source model is
effectively incorporated to amplify performance and understanding.
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glossary with over 100 words was developed based on the Emer-
gency Events Database (EM-DAT), FEMA, United Nations Office
for Disaster Risk Reduction (UNDRR), and Waze. Web scraping
was performed to collect the keywords from the respective sites,
and manual inspection was done to ensure there were no duplicate
terms among the sources and words that were fully applicable or
used commonly were represented from longer phrases (e.g., used
the word “damage” instead of “estimated damage” in the EM-DAT
database). The tactic was designed to maximize the number of rel-
evant tweets that could be collected.

Preprocessing
Textual data can be informal and not structured in a way to enable
classification processes. Text from social media can be noisy
containing special characters (i.e., emojis and symbols), slang and
misspelled words, hashtags, URLs, and more (Salas et al. 2017).
Text mining approaches ease the difficulties associated with the
time consuming and inconsistent process of manually cleaning data
and have been proven to have higher accuracy than no preprocess-
ing techniques being performed at all (Mhatre et al. 2017). In order
to prepare all text for the classifiers, we removed these additional
elements (e.g., extra URLs, white spaces, special characters, upper-
case words, and unnecessary words) using FastText (FastText
2023). This is done through standard techniques such as tokeniza-
tion (i.e., breaking a sentence into words), stop words removal
(i.e., simplifying text and removing words that add no meaning
such as “a” and “the”), stemming (i.e., finding the root/stem of
the word), and lemmatization (i.e., generating the base or dictionary
form of a word) (Mhatre et al. 2017). After these preprocessing
techniques, we had a clean corpus of words, and the fused
textual information was converted to vectors to be utilized in the
LDA model to generate labels based on all text.

Topic Modeling
To obtain the labels for classifying the data set, LDA topic-based
modeling was performed. We utilized different LDA-related
Python packages to model our preprocessed tweets, running the

model with different parameters (altering the number of topics
and words within each topic), and using a standard deviation test
to determine the number of topics. From the standard deviation test,
four to six topics was identified as the preferable range, and running
the model on these three different options, five topics was deemed
as the most optimal. Also, to further refine the model, we modified
the parameters further to only include words that were nouns,
adjectives, and verbs in the preprocessing portion. After running
several tests, the number of topics was set to five (with 10 words
in each topic). This process of identifying topics and refining the
model is a conventional practice in the application of topic model-
ing. The topics were subsequently interpreted through internal
validation within the team to ascertain their practical coherence
and relevance. Interpreting each topic, the topics were “0”: broad-
cast/news (e.g., anything to do with the news, the government,
alerts, etc.); “1”: power (e.g., anything to do with power outages,
power lines, power systems, lights, Wi-Fi, Internet, etc.); “2”: traf-
fic incidents (anything to do with car crashes, congestion on the
roads, evacuation, etc.); “3”: forecast/weather (anything to do with
the climate, flooding, etc.); and “4”: miscellaneous (anything that
does not fit into these categories and/or has nothing to do with a
disaster). The last topic also acts as an additional filter to catch
tweets that made it into the text corpus that may have a different
interpretation of a word in the disaster-based glossary. Throughout
the rest of this paper, the labels will primarily be referred to by their
corresponding numerical identifiers as mentioned in the previous
sentence. The top eight most frequent words identified in the
LDA model were watch (appearing 7,772 times), broadcast (ap-
pearing 4,910 times), storm (appearing 4,553 times), chance (ap-
pearing 3,293 times), tonight (appearing 2,960 times), live
(appearing 2,391 times), forecast (appearing 2,323 times), and alert
(appearing 1,960 times). These top words indicate discussion
around a time-sensitive storm and that needs pertain most fre-
quently to the topics connected to weather and what is being out-
lined in news reports. This is beneficial to operators as it can help
them with tasks immediately after a disaster such as crafting public
safety messaging relevant to what people may or may not already
know about the disaster or emerging risks responders will face
when dispatched.

Semisupervised Learning
The topics from the LDA model described in the previous section
(i.e., “0”: broadcast/news; “1”: power; “2”: traffic incidents; “3”:
forecast/weather; and “4”: miscellaneous) were used as labels in
this SSL approach. The model was generated using a label spread-
ing package (Zhou et al. 2004). Roughly 1% of the historical storms
data set was manually labeled, leaving 99% unlabeled. To deter-
mine the 1% of the fused data that would be manually labeled,
the data set was randomized using a function in Python, and then
labeled with equal distribution of each topic classification. Labeling
1% of the data was determined to be the guideline for how much of
the data should be labeled, as the aim is to limit the manual training
of the data, and labeling 1% has been found to achieve high
accuracy (Chen and Wang 2017). The annotators consisted of two
members from our research team. Annotators divided the 1% of
the data set that required labeling according to a well-defined
and mutually agreed-upon set of label definitions. After each
designated annotator completed their assigned portion, they collab-
oratively reviewed and discussed the labeling. In the rare event of
any disagreement, a third team member was available to arbitrate.
This internal validation protocol was implemented throughout the
labeling process (Chowdhury and Zhu 2023).

The data were split into 70% being the training set and 30%
being the testing set. This was fed into the model, generating

Table 1. List of keywords used to create disaster-related word corpus and
their source

Keywords Source

Affected, Airburst, Avalanche, Chemical,
Climate, Coastal, Collapse, Damage, Death,
Derecho, Disaster, Disease, Drought,
Earthquake, Epicenter, Epidemic, Explosion,
Famine, Fire, Flood, Flow, Fog, Food, Freeze,
Frost, Hazard, Homeless, Hurricane, Ice,
Impact, Injured, Injury, Lahar, Lake, Landslide,
Lava, Lightening, Liquefaction, Loss, Missing,
Niño, Poisoning, Power, Rain, Risk, Seiche,
Shake, Sinkhole, Soil, Storm, Subsidence,
Surge, Tornado, Transport, Tsunami, Typhoon,
Volcanic, Vulnerability, Wave, Wind, Winter

EM-DAT (CRED 2009)

ARC, CDC, CERT, Community, Crisis, DHS,
Drill, Emergency, EMS, EOC, EPA, Evacuate,
Evacuation, FEMA, HAZMAT, IMT, Incident,
JIC, JIS, NGO, NIMS, Procedure, Protection,
Rescue, Responder, Response, Shelter,
Structural, Threat, Tree, Warning, Watch,
Water

FEMA (2023b)

Building, Critical UNDRR (2016)

Accident, Alert, Construction, Jam, Road,
Traffic, Weather

Waze (2017)

© ASCE 04024055-6 J. Manage. Eng.

 J. Manage. Eng., 2024, 40(6): 04024055 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
09

/0
5/

24
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



pseudo-labels for the entire data set based on the model’s predic-
tion. A validation set of 20% of the data was extracted from the
training set prior to this analysis to provide an unbiased evaluation
of the model fit on the training set and to tune the hyperparameters.
Once the model was completely trained, we ran the testing set to
see if the model could predict labels on this data set with adequate
accuracy through our evaluation metrics discussed in the next
section, and labels were successfully generated from the model
for our testing set. With this task completed, we now had a
trained model that was ready to be used for the transfer learning
process.

Evaluation Metrics for the Model
To assess the validity of the model, precision (i.e., true positives
over all that was predicted as positive), recall (i.e., true positives
over all that should have been predicted as positive), and F1-score
(i.e., combination of precision and recall, the overall accuracy)
were calculated, along with creating confusion matrices. Table 2
shows the classification reports for the historical data set. Higher
precision indicates fewer false positive predictions, higher recall
indicates capturing most positive cases with few false negatives,
and a higher F1 score demonstrates robust performance by achiev-
ing both high precision and high recall simultaneously, effectively
classifying positive cases while minimizing false positives and false
negatives. “Support” outlined in the last column of Table 2 and
other classification report tables is the count of occurrences expe-
rienced in each class. A confusion matrix was generated (Fig. 2)
based on these initial scores and a single-fold analysis. A 10-fold
cross validation was then done again on the precision, recall, and
F1-score metrics to generate a final accuracy, and a confusion
matrix was also produced for this cross validation based on the
label spread performance of the model (see Fig. 3). These were
completed for the five topics (i.e., the five classes in the classifi-
cation reports).

Target Domain Model

Case Study
According to FEMA, the state of Florida has experienced more
than a dozen major disaster declarations in the last decade alone,
ranging from tornadoes to hurricanes, with one of the most recent
major disasters being Hurricane Ian (FEMA 2023a). Despite
Florida being a coastal state that experiences numerous natural
disasters, historically it has just under a 70% success rate with being
granted major disaster status for aid disbursement (Schmidtlein
et al. 2008). Hurricane Ian is tied as the fifth strongest hurricane
to hit the United States and began on September 23, 2022, in
the central Caribbean as a tropical storm and three days later on
September 26, 2022, became a hurricane (NOAA US Department
of Commerce 2022). When Hurricane Ian approached southern
Florida on September 28, 2022 it was a Category 4 storm, and
it left Florida the next day, with intense winds and rainfall, as a
tropical storm again heading to South Carolina (NOAA US

Table 2. Classification report for label spread for historical data

Topic Precision Recall F1-score Support

0 0.95 0.90 0.93 2,270
1 0.82 0.59 0.68 2,221
2 0.93 0.69 0.79 666
3 0.86 0.87 0.87 2,476
4 0.81 0.95 0.88 5,392
Accuracy — — 0.85 13,025
Macro average 0.87 0.80 0.83 13,025
Weighted average 0.85 0.85 0.85 13,025

Fig. 2. Confusion matrix for label spread for historical data (no cross
validation).

Fig. 3. Confusion matrix for label spread for historical data (cross validation). With average accuracy across folds: 0.833.
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Department of Commerce 2022). This case study, which we con-
ducted to demonstrate our framework, focuses on the “immediately
after” part of the disaster cycle (i.e., meaning right after the disaster
has left an area) to see community conversations based on the im-
pacts of the hazard. This also aligns with when damage assessments
would typically take place. Other studies have investigated two-
week periods beginning at the landfall or origin of when the storm
begins (Samuels and Taylor 2020) and showed that at two weeks
the discussion gradually decreases (Zou et al. 2018). Since this
study is focused on immediately after the storm exits an area,
and investigates when people could be most engaged, a weeklong
period was studied for Hurricane Ian, making the “postdisaster
period” September 29, 2022, to October 6, 2022. Hurricane Ian also
was declared a major disaster on September 29, 2022 (FEMA
2023a), emphasizing the importance of promptly understanding
the ongoing situation with the expeditious declaration.

Data Collection
Data were collected from Twitter and Waze during this period for
Hurricane Ian with 10,209 filtered tweets and 15,913 Waze alerts.
Twitter data were collected through Twitter’s public Application
Programming Interface (API). Data were retrieved for Hurricane
Ian from a live data collection stream developed in Python within
our Lab. The data were collected by year, month, day, and hour and
stored in JavaScript Object Notation (JSON) format. The Waze
data used for this study were Waze alerts, which were initially
collected through the Waze GeoRSS Feed that is shared with
Connected Citizens Program (CCP) partners, such as the Georgia
Department of Transportation (GDOT), for further configuration.
The Waze data were collected in Extensible Markup Language
(XML) format, showing pertinent information such as the date
and time of an incident, precise coordinates, type and subtype
of an alert, street name where the alert occurred, country, road type,
report rating, confidence, and reliability of incident feeds within the
bounding box of the state of Florida.

Parsing (Waze) and Filtering (Twitter)
For Waze alerts, the provided GeoRSS feed collected data needed
to be transformed into a readable format for the model. The same
filtering process in the source domain model for tweets was
executed here to maximize the number of relevant tweets on
Hurricane Ian in Florida.

Transfer Learning
The transfer learning process is outlined in Fig. 1 and the “Source
Domain Model” section. The model built in the source domain
model is already trained and ready to be used at this point in
the target domain model. There is no more training or manual
processes. It is fully automated since the source domain model
was saved and applied here. When the data for Hurricane Ian was
run through the saved model, just as in previous evaluations, the
predicted labels were assessed with precision, recall, and F1
scores (see Table 3) along with confusion matrices (see Figs. 4
and 5). The outputs demonstrated that the model is a reliable
model, even having a higher accuracy score than the source
domain model.

Spatiotemporal Data Fusion
The advantage of data integration lies in the ability to enhance and
enrich data sets by leveraging their complementary nature. Despite
the inherent differences between the Twitter and Waze data sets,
such as variations in data collection formats, accuracy, reliability,
completeness, and contextual nuances, this study navigated these
heterogeneities through careful parsing and selection of the re-
levant components of each data set, with the aim to fuse them

for improved accuracy. Both Twitter and Waze data sets have date,
time, location, and textual information pertaining to event detection
for a natural disaster. With Twitter, the textual data is the tweet itself
(i.e., what the user has posted), and the location is in the form of a
precise location or bounding box with the current API (most are the
latter). For Waze, the textual data is the alert type and subtype given
to the report that the user assigns to the incident, and it provides a
single coordinate pair. Waze alerts are classified with the following
types: accident, jam, weather hazard/hazard, miscellaneous, con-
struction, and road closed. The subtypes provide more detail for
each alert type such as weather hazard/hazard displaying subtypes
pertaining to fog, hail, rain, snow, hurricanes, etc.

To fuse these data sets, we identified and paired the tweets and
Waze alerts within minimum spatial proximity. This was achieved
using the Haversine distance between locations [see Eq. (1)], which
can be used to calculate distance between latitude/longitude pairs
for real-time classification (Zubiaga et al. 2017). With the current
API’s bounding boxes for tweets described as being able to be as
large as 25 miles in width and height (Twitter Developer Platform
2023), in order to refine the spatial scale of the tweets collected,
they were further filtered to identify neighborhood or city informa-
tion (i.e., shrinking the size of the bounding box). To obtain coor-
dinates for each neighborhood or city bounding box the center of
each bounding box was found, which has been done in previous
work on a larger scale (Zubiaga et al. 2017). The crowdsourced
data produced by Waze reportedly experience about a 30 s delay
in reporting, which can cause an incident to be recorded 0.8 km
(i.e., approximately half a mile) away (Amin-Naseri et al. 2018).
Despite potential reporting delays, Waze data still offer greater
location accuracy than Twitter data, providing more precise and
reliable coordinates, particularly crucial in scenarios such as
transportation planning and management, where precise location

Table 3. Classification report for label spread for Hurricane Ian (with
transfer learning from historical data)

Topic Precision Recall F1-score Support

0 0.93 0.73 0.82 205
1 0.85 0.49 0.62 89
2 0.92 0.87 0.89 146
3 0.77 0.92 0.84 968
4 0.91 0.85 0.88 1,655
Accuracy — — 0.86 3,063
Macro average 0.87 0.77 0.81 3,063
Weighted average 0.86 0.86 0.85 3,063

Fig. 4. Confusion matrix for label spread for Hurricane Ian (no cross
validation).
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information is essential. Given this information, the parameters for
selecting the tweets closest to Waze reports were set within 1.61 km
(i.e., 1 mile) of location to one another to account for delays of up to
60 s in reporting an incident. The merge is based on location and
date, displaying all attributes of both feature layers in one data set.
The output is a fused data set, matching a tweet with the nearest
Waze alert with each data point showing the paired data sets’ in-
formation along with a classification label and distance from one
another. Upon completion, there were 2,566 Twitter and Waze pair-
ings. It is important to note that the same tweet can be paired with
multiple Waze alerts depending on proximity. This fusion yields a
validation achieved by combining the now reported, dependable
Twitter data from the model with the already reliable Waze data,
serving as a confirmation for the convergence of these two data
sets. This validation is further reinforced by the illustrative case
study, emphasizing the efficacy of merging these data sets for
enhanced decision-making:

d¼ 2rarcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

�
φ2−φ1

2

�
þ cosðφ1Þcosðφ2Þsin2

�
λ2−λ1

2

�s !

ð1Þ

where φ1 and φ2 = latitude coordinates of two points; and λ1 and
λ2 = longitude coordinates of two points.

Generalizability
To test generalizability of the proposed framework, the model was
run again on data in a different state, for a different storm. Tropical
Storm Zeta in Georgia was the storm used to test the generalizabil-
ity of the model. The disaster began on October 21, 2020, in the
western Caribbean as troubled weather, being slow to develop, and
then on October 23, 2020, forecasts reported Zeta disturbance
being brought into the southern Gulf of Mexico along with greater
odds of this weather being an actual storm (NOAAUS Department
of Commerce 2020a). On October 25, 2020, the tropical storm
formed and strengthened over the next few days as it began
approaching the US, with its highest strength being reported as
a category 3 hurricane (NOAA US Department of Commerce
2020a). Georgia news outlets and other mediums (e.g., the National
Weather Service) reported on Tropical Storm Zeta with the storm

striking and leaving the state of Georgia on October 29, 2020
(FEMA 2021; NOAA US Department of Commerce 2020b). This
test focused on dates pertaining to after this incident, the same
“right after” timing with a weeklong period done for Hurricane
Ian in the case study above. The “postdisaster period” was October
30, 2020, to November 6, 2020. The results of the study (Table 4)
show that the model is not only acceptable for the state of Florida
but can also be transferred and used effectively for Georgia. The
results suggest the possibility of using this framework for other
events in other locations as well, as it has an accuracy score that
is within a 3% margin of the model outputs from Hurricane Ian.
Confusion matrices with and without cross validation were also
produced for the Georgia event (see Figs. 6 and 7).

Case Study Visualization
Fig. 8 shows tweets fused with Waze alerts being spatially mapped
(displayed with the labels for each pairing), with context embedded
in each icon on the map for emergency personnel to have access to
in a visual interface. An example pairing is also pictured in Fig. 8 in
the inset table, showing how a tweet can add further context to a
Waze alert beyond its original classification. As the miscellaneous
label was noted as an additional filter, it is not displayed in the final
visualization. The visualization shows a substantial amount of fused
data points related to forecast/weather and traffic. The discussion of
these topics in particular aids emergency operators and responders
with actions such as feasibility of potential infrastructure repair,
cleanup, or evacuation planning. Engaging in weather-related

Table 4. Classification report for label spread for Tropical Storm Zeta in
Georgia

Topic Precision Recall F1-score Support

0 0.94 0.48 0.64 127
1 0.95 0.28 0.43 76
2 0.93 0.92 0.93 74
3 0.85 0.65 0.74 343
4 0.81 0.98 0.89 968
Accuracy — — 0.83 1,588
Macro average 0.90 0.66 0.72 1,588
Weighted average 0.84 0.83 0.81 1,588

Fig. 5. Confusion matrix for label spread for Hurricane Ian (cross validation). With average accuracy across folds: 0.834.

© ASCE 04024055-9 J. Manage. Eng.

 J. Manage. Eng., 2024, 40(6): 04024055 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
09

/0
5/

24
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



discussions enables responders to obtain crucial information, such
as the extent of severe flooding in a building or instances of light-
ning striking trees. Traffic discussion allows them to know what
major route or highways are jammed, using the augmented data
from Waze. They can then select the proper evacuation routes that
avoid congestion, with context of how long it might take for traffic
to clear up (e.g., accident, debris on highway, how many lanes are
closed, etc.). Furthermore, with the location information, local gov-
ernments will also be able to see exactly how a portion of a neigh-
borhood might be affected by a disaster, which can help guide what
preparedness plans or mitigation tactics can be deployed. All this
knowledge assists them in comprehending the specific impacts of
the disaster and to tailor their response efforts accordingly.

Mitigating Bias of the Model

As mentioned previously, the model was designed toward equitable
practices utilizing the Wells–Du Bois protocol. Again, it comprises
three dimensions and seven items, most effectively explained
by posing the corresponding questions: bad data—(1) inadequate
data (i.e., Does the data exhibit systematic omissions or misclassi-
fications of certain subpopulations?) and (2) tendentious data
(i.e., Does the model reflect subjective decisions?); algorithmic

bias—(3) harms of identity proxy (i.e., Is there a potential for
the model to exhibit systematic biases toward specific races,
genders, or social classes?), (4) harms of subpopulation difference
(i.e., Does the algorithm demonstrate varying performance out-
comes among different subgroups?), and (5) harms of misfit
models (i.e., How does the model assess error? What are the
broader public and social implications of this research?); and
Human Intent—(6) do no harm (i.e., Are you ensuring transpar-
ency regarding the objectives and aims of your research?) and
(7) harms of ignorance (i.e., Have you carefully examined the
potential unintended consequences of your research?) (Monroe-
White and Lecy 2022). For each dimension, we discuss the follow-
ing actions taken to mitigate bias in our study:
1. Bad Data

• Inadequate data: Reporting data sizes and metrics is needed
to overcome this. Interpreting this to social media in disaster
management, applicable descriptive statistics are given in
the training data sets and are separated by group identities
(i.e., the classification of labels).

• Tendentious data: Disclosure of human judgement is needed.
We disclose in our model that 1% of our model is manually
labeled; however, the labels themselves that were generated
do not pose such bias as they were constructed with an LDA
model based on the textual information provided by the
people and not influenced by the researchers.

2. Algorithmic Bias
• Harms of identity proxy: The model did not consider race,

gender, or social class as factors for the desired outcome.
The way Twitter and Waze are both designed, it does not
provide such demographic data per post, and only the text
and location were needed in this study. This is because in
the context of immediate emergency response, it is challeng-
ing to prioritize one life over another, as natural disasters
strike without regard for such distinctions. While indicators
such as community vulnerability would be crucial for assess-
ing measures such as these, the focus of this study was to
identify and classify imminent needs of social media users.

• Harms of subpopulation difference: This study caters to the
population that relies on these platforms for communica-
tion during a crisis, thereby considering them as a distinct
demographic subset in itself. As mentioned previously, only

Fig. 6. Confusion matrix for label spread for Tropical Storm Zeta (no
cross validation).

Fig. 7. Confusion matrix for label spread for Tropical Storm Zeta (cross validation). With average accuracy across folds: 0.812.
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the text and location of each data source were used; the final
output does not note who the user was but solely what they
said and where they are for enhanced context of the disaster
(i.e., maintaining consistency).

• Harms of misfit models: The model undergoes cross valida-
tion to avoid overfitting. The goal of this research is serving
the population who uses such platforms to communicate
during a crisis to aid and enhance the decision-making
process for emergency management personnel. The impact
of this work can improve allocation of resources for emer-
gency events.

3. Human Intent
• Do no harm: The goal is for this work to be implemented

into agencies such as state DOTs; we make sure to document
and share this work with both applicable stakeholders and
the research community.

• Harms of ignorance: We have examined the unintended
consequences of our research. For instance, if a cyberattack
were to occur on this model as it was deployed into society,
adversaries would have knowledge of communities that are
currently at risk and what they proclaim to need. Adversa-
ries could send phishing emails, tweets, etc., to try to take
advantage of those impacted populations. Inclusion of
protective measures should be done for such a system when
employed.

It is important to acknowledge that this process does not
guarantee the model has no problems in terms of potential bias,
but rather serves as a means to implement mitigation strategies
and strive toward achieving a threshold for reducing biased re-
search practices; this protocol emphasizes that mitigation efforts
are not primarily aimed at solving the issue at hand but rather at

acknowledging and addressing the issue prior to the implementa-
tion of a model (Monroe-White and Lecy 2022). Implementing the
Wells–Du Bois protocol played a significant role in bias mitigation
efforts for our model. The protocol guided us in systematically con-
sidering harmful impacts, enhancing transparency, and minimizing
bias, thereby fostering fairness in our approach. Our confidence
in the protocol’s efficacy stems from extensive deliberation and
discussions with various stakeholders, particularly operators, who
provided valuable insights into the challenges and potential biases
inherent in our framework, leading us to our final workflow.
A notable example that highlights the effectiveness of the protocol
is the recognition of the “harms of ignorance” and the critical
reflection on the implications of our framework’s output. This reali-
zation prompted us to engage in further discussions with key
personnel, revealing the crucial need for cybersecurity recommen-
dations to protect vulnerable populations from further harm. As a
result, new studies were initiated to develop preventive measures
for systems similar to ours (Salley et al. 2024). Overall, by directing
our attention toward the population we aim to serve, those with
access to and who use social media and community-driven appli-
cations, we meticulously evaluated our data collection and model
implementation and adhered to the seven items outlined in the
Wells–Du Bois protocol to actively work toward mitigating poten-
tial biases.

Discussion

The framework developed in this study contributes to the larger
discussion of enhancing community perspectives in disaster
informatics. As discussed relative to FEMA’s disaster declaration

Fig. 8. Example of a classified Twitter and Waze pairing output for Hurricane Ian in Florida, zooming in on an area displaying multiple topics from
the study. (Sources: Esri, USGS, University of South Florida, FDEP, Esri, HERE, NOAA, USGS, EPA, NPS; Esri, NASA, NGA, USGS, Miami-Dade
county, FDEP, Esri, HERE, Garmin, SafeGraph, FAO, METI/NASA, USGS, EPA, NPS.)
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process, it is crucial for emergency management agencies to receive
information, from models such as the one from this study, that can
represent and assess what communities need in near real time from
the people themselves. Communities, such as areas in Puerto Rico
after Hurricane Maria, have been documented as being failed by
federal agencies due to these organizations not being fully prepared
to respond to disasters or being able to anticipate locals’ needs
(Sullivan and Schwartz 2018). Knowing what an area needs while
a crisis occurs can prevent missteps such as this. It has also been
shown that federal disaster relief falls short of equitable measures,
leaving disenfranchised and historically marginalized communities
at a disadvantage, with FEMA itself stating, “For disaster prepar-
edness, mitigation, response and recovery to drastically improve in
2045, emergency management must understand equity and become
equitable in every approach and in all outcomes” (National
Advisory Council 2020). This is why some of their goals in their
2022–2026 FEMA Strategic Plan are to have more of a “people first
approach” and “meet current and emergent threats” (FEMA
2023d). To address these needs, our framework is centered around
community perspective and constructing a system that keeps equity
at the forefront and acknowledges current disparities and potential
impacts of machine learning efforts. Studies such as this add to
the growing body of knowledge of determining ways to more ac-
curately, and effectively, recognize community needs during or
after a disaster to better serve society with a community centered
approach.

The framework developed in this study also guides decision-
making toward equitable response to disasters. It is important that
computational models work toward fairness as most are currently
unfair due to training data that can disproportionately affect mar-
ginalized populations and not thinking of the harmful effects a
model can have when integrated in the real world (Monroe-White
and Lecy 2022). Disparities such as wage gaps, mortality, and ac-
cess to care can be seen in all areas of life and the built environ-
ment, and when exposed to natural disasters such disparities can be
exacerbated when not accounted for properly. Research indicates
that there are still few studies on infrastructure and social equity
(Dhakal et al. 2021). Social equity systems research in emergency
management and disaster research has employed analyses of social
vulnerability to expose how disenfranchised populations recover at
a slower rate back to their predisaster state (Kim and Sutley 2021).
Often the occurrence of natural disasters is viewed as “equal op-
portunity” in the sense that storms, tornadoes, etc., do not intention-
ally target a certain population; they just occur haphazardly and
can damage everyone just the same (Lieberknecht et al. 2021).
While it is true the damage done by major disasters on the surface
can be the same (e.g., power outages, extensive flooding, etc.), the
postdisaster and recovery phase is not an “equal opportunity” when
it comes to the dissemination of resources and the time it takes
to rebuild a community depending on its pre-existing conditions.
This phenomenon may arise as a result of a limited conceptual
framework that fails to account for the disparities inherent in con-
temporary machine learning techniques employed to assist com-
munities, wherein the incorporation of equity benchmarks or the
pursuit of fundamental bias reduction may be overlooked. In some
cases, without adequate support a disenfranchised population that
is met with an emergency event may never fully recover because
they already began at a deficit. Addressing such disparities in the
physical, economic, and social environments could improve infra-
structure systems and approach equity to establish a culture that
provides just assets, funds, policies, and education to communities
that need it most.

Limitations and Future Work

Although Twitter is the world’s largest microblogging social media
network and a popular platform used to extract information for re-
search purposes, latitude and longitude pairs (i.e., precise coordi-
nates) of tweets are no longer automatically attached to all tweets,
reducing the number of precisely located posts since about 2016
(Maurer 2020). It is optional for users to share their location; thus
most tweets collected through Twitter’s streaming API are not
georeferenced with exact location but with bounding boxes from
place information instead (Maurer 2020). For the framework estab-
lished in this paper, both precise coordinates (when provided) and
bounding box coordinates were utilized for tweet location informa-
tion on the neighborhood and city level.

As highlighted earlier as a challenge with social media, the
volume of data is an ongoing and probable obstacle when dealing
with Twitter data. Using social media or community-driven data in
disaster research is heavily reliant on citizens participating and
providing useful information on such platforms. While this infor-
mation can be useful to measure other metrics or relationships, in
real-time tracking when trying to assess the needs of a community,
an extensive community voice is needed. Additional efforts can be
made by relevant agencies and stakeholders to educate community
members about leveraging these platforms as a means of meaning-
ful interaction, fostering actionable outcomes. Alternatively, they
can also prioritize the promotion of their existing systems to ensure
greater engagement and effectiveness. However, we discovered,
through a disaster-based glossary for filtration and the use of trans-
fer learning, more relevant tweets can be found than previous work
(Salley et al. 2022). This framework accounts for scarcity of data
and allows for a faster, more automated process when evaluating
social media data.

Lastly, as mentioned in the “Mitigating Bias of the Model”
section, Twitter and Waze do not provide specific demographic
information such as race, gender, or social class on a per-post basis.
Consequently, the focus of this study was not on sociodemographic
vulnerability but rather on the needs of populations affected by
crises that rely on these platforms for communication. These
populations can be considered a distinct demographic subset in
themselves, highlighting Twitter’s role as a social sensor. While it
is important to note that these platforms do not represent the entire
population, and recent, comprehensive demographic information
has not been readily available since around 2013 (Wang and Taylor
in 2016), it is worth mentioning that recent data suggest certain
trends. For instance, among its multimillion users, approximately
37% of users are female, while 63% are male on Twitter; further-
more, users between the ages of 25 and 34 exhibit high activity,
representing around 38% of users worldwide (Dixon 2023). The
pursuit of representativeness of the data needs to be continuously
asked and answered to further analyze any limitations of the
research or further generalizability of its results (Kumar and
Ukkusuri 2020) as no data set suits every single task and all can
have some sort of limited scope (Nargesian et al. 2022). The most
beneficial utilization of social media is achieved when it is used in
conjunction with existing emergency management systems at local
and government agencies, such as a Department of Transportation
(DOT), as it does not holistically represent an entire community
and other measures should be used to further contribute to
decision-making.

Future work related to this framework should adapt this frame-
work to completely online machine learning labeling, negating any
manual process. Future work should also further examine historical
data in relation to the typical engagement that communities have
with emergency management (e.g., good or bad relationships,
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levels of engagement on social media, etc.) on different spatial and
temporal scales. This study explored neighborhood and city levels
day by day, but exploration of county and census level data on an
hourly or minute basis may reveal other insights. This could also
reveal how a community already utilizes local agencies in these
spaces and can provide a baseline for how useful social media
networks may be for real-time tracking in a particular area. How
citizens currently use social media should also be continually
reevaluated, as new platforms are emerging and old ones are obso-
lescing and updates to current platforms occur often. Additionally,
it is essential to undertake extensive quantitative and qualita-
tive investigations when dealing with complex issues like these
to effectively counter computational biases during model construc-
tion and deployment. Given the nature of these challenges, which
rely on data and computational solutions, it becomes imperative
to continue to investigate a range of bias mitigation methods. More
approaches to determine the most appropriate strategy tailored to
the unique demands of the research problem should be investigated.

This study can be taken further in the future through the devel-
opment of a process that works toward fairness more and establish-
ing measures for proper allocation of resources. Presently, there
exists a paucity of scholarly investigation concerning the integra-
tion of equity metrics or protocols in the utilization of social media
within the scope of emergency management. Further exploration is
called for to thoroughly examine ongoing constraints as it relates
to equity measures in this domain, such as with specific popula-
tion subsets, through leveraging quantitative analyses, qualitative
insights, and stakeholder feedback to offer a comprehensive eval-
uation of protocol effectiveness and implications for meeting
community needs during and after disaster events. Finally, this
study suggests avenues for future exploration regarding the gener-
alizability and transferability of the pretrained model. While our
initial assessment showcased transfer learning across two areas
within the same region and for similar meteorological phenomena,
additional research is needed. Specifically, further investigation is
warranted to assess the sensitivity to the features of the training
data set and the approach/procedure of model training on other
scenarios. Additionally, it is crucial to determine whether the model
maintains its accuracy when applied to different areas and types of
disasters, based on relevant training data. Methodological consid-
erations in future works must be thoroughly examined to optimize
the efficacy of transfer learning in such diverse contexts.

Conclusion

This study was able to identify areas in Florida that were impacted
by a disaster with augmented context of specific needs based on
classification of a paired data set employing machine learning
techniques. The final output for the historical data identified perti-
nent topics that could be transferred and applied for use in future
hurricanes. The final output for the postdisaster period of Hurricane
Ian data showed extensive discussion related to the forecast and
weather issues related to the storm, as well as the traffic occurring
within communities due to the disaster. This research addresses the
postdisaster period of a natural disaster, focusing on disasters clas-
sified as hurricanes and tropical storms for emergency responders,
to be able to aid civilians and distribute the necessary resources to
specific areas more quickly and efficiently. The model addressed
the following research question: “What is the impact of integrating
social media with community-driven applications on improving the
capture of incidents related to emergency management, mitigating
machine learning bias, and validating their respective effective-
ness?” The investigation demonstrated the integration of social

media data with community-driven applications, thereby amplify-
ing the efficacy in detecting and documenting incidents from com-
munities relevant to emergency management. Additionally, our
model was capable of accurately representing pertinent community
needs while concurrently adhering to a baseline standard for equity
through mitigation of machine learning bias. This was evidenced
through an illustrative case study using a machine-learning based
framework which fused Twitter and Waze through transfer learn-
ing, NLP, and spatiotemporal analytics on the georeferenced data
streams pertaining to emergency events to accurately detect the
location and type (i.e., flooding, road closure, etc.) of an event.
To the best of our knowledge, this study represents one of the initial
endeavors to integrate the Wells–Du Bois protocol in order to
achieve a baseline of bias mitigation.

The practical contributions of our study include aiding emer-
gency management decision-making and situational awareness for
disasters as well as improving allocation of resources to reduce the
harmful effects of disasters. This paper adds to the growing body of
knowledge on this topic addressing the shortcomings of Twitter and
Waze applications for disaster detection and effective augmentation
of platforms such as these. It establishes a foundation for (1) an
integrative approach between social media and community-driven
applications for crisis event detection toward further expansion of
response capacity for real-time decision-making; and (2) including
an equity appraisal through incorporating equity protocols into the
research process. Recognizing and addressing potential disparities
is essential for developing equitable strategies to ease the recovery
process for individuals lacking necessary resources, thereby
enhancing community resilience. Our approach holds promise in
informing the design of future infrastructure systems that can better
withstand the impacts of emergencies and efficiently allocate
resources. Ultimately, this can positively influence the overall health
and well-being of communities by improving systems that facilitate
access to emergency healthcare and essential lifeline infrastructure,
ensuring more effective and accessible support during critical
situations.
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