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Abstract

Accurate damage assessment after an earthquake is crucial for effective emergency
response. Using ground motion information enables rapid building damage
assessment when detailed damage data are unavailable. While uncertainty in
earthquake parameters plays a significant role in the accuracy of rapid estimations,
it is usually treated as a constant parameter rather than as a dynamic parameter
that considers the amount of ground motion data collected that evolve over time.
This work investigates the impact of incorporating evolving ground motion
uncertainty in ground motion estimations from US Geological Survey’s (USGS)
ShakeMap on post-disaster damage assessments from two methodologies: the
revised Thiel-Zsutty (TZR) model and Federal Emergency Management Agency’s
(FEMA) Hazus. Using data from the 2020 Indios earthquake in Puerto Rico and the
2014 Napa earthquake, we find that changes in uncertainty in estimates of peak
ground acceleration reach 65% between early and late versions of the ShakeMap.
We propose a process to integrate this evolution with the two damage assessment
methodologies through a Monte Carlo simulation-based approach, demonstrating
that it is critical to introduce dynamic ground motion uncertainty in the damage
assessment process to avoid propagating unreliable measures. Both methodologies
show that resulting damage estimates can be characterized by narrower
distributions, indicative of reduced uncertainty and increased precision in damage
estimates. For the TZR model, an improved estimate of post-disaster loss is
achieved with narrower bounds in distributions of expected high scenario loss. For
Hazus, the results show potential changes in the most probable damage state with
an average change of 13% in the most probable damage state. The described
methodology also demonstrates how uncertainty in the resulting damage state
distributions can be reduced compared with the use of the current Hazus
methodology.
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Introduction

Rapidly assessing building damage is critical during the aftermath of a disaster. For example,
emergency managers require situational awareness of damage to manage resources, personnel,
and evacuations. Having a detailed description of damage across an affected area improves the
prioritization of assets to facilitate post-disaster recovery. Thus, having an effective and accu-
rate protocol for damage assessment is central to enhancing the disaster resilience of a region.

Accurate damage assessment combines multiple technologies and approaches, some of
which require substantial time to capture aspects of the data in the field. The resulting data
sets often also require significant processing before they can be effectively used in post-
disaster decision-making. One approach that overcomes these obstacles is to use early
ground motion data to rapidly estimate building damage. For seismic events, one of the first
data sets available is US Geological Survey’s (USGS) ShakeMap, a spatial representation of
ground motion parameters and earthquake intensity (Wald et al., 2005). The ShakeMap is
usually published 20 min after the event and is frequently updated as new data are collected
(Wald et al., 2022). To transform the data from the ShakeMap into estimates of building
damage, models are used that combine data from the severity of the earthquake (i.e., the
ShakeMap), local site conditions (e.g., soil type), and information about the built environ-
ment to perform damage assessments. These empirical models that merge earthquake data
are useful for response activities during the first week after an earthquake, when there is lit-
tle information about damage in the field. FEMA’s Hazus, for instance, is one of the tools
capable of merging these various data sets (Kircher et al., 2006).

The outcomes of these damage estimations can be subject to high uncertainty given the
lack of data and the complexity of nature’s processes (Handmer, 2002). This includes the
ground motion uncertainty, that is, the uncertainty on the intensity of the ground motion at a
specific location and uncertainty in structural responses to a given loading. To model these
uncertainties, fragility curves are commonly used, which represent the probability of reaching
or exceeding a certain level of damage given a ground motion parameter (e.g., peak ground
acceleration (PGA)) (Baker et al., 2021). In damage assessment methodologies such as Hazus,
the uncertainty in fragility curves is represented by a parameter 8 that accounts for all uncer-
tainty sources including seismic, structural, and site-specific sources (Porter et al., 2002).

While uncertainty plays a significant role in the accuracy of rapid post-disaster damage
assessment, particularly for seismic events, fragility curves typically consider ground
motion uncertainty as a constant value that depends only on previous events and empirical
measures (Porter, 2010; Thiel Zsutty, 1987). In other words, even when more data are col-
lected and estimations improve in the ShakeMap, most methodologies do not update the
ground motion uncertainty to estimate the damage. Figure 1 illustrates how damage
assessments evolve over time after an earthquake event. Estimated performance of a struc-
ture or system is shown as a solid line. Early rapid damage estimations are subject to
higher uncertainty (green shaded area), and as more detailed damage data are collected,
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Figure 1. Evolution of a system’s damage comparing dynamic and constant uncertainty.

the uncertainty decreases (blue shaded area). In contrast is the constant uncertainty (gray
shaded area), which is time invariant. Using constant ground motion uncertainty values
resulting in constant structural performance assessment uncertainty can underestimate the
uncertainty in the early stages after an earthquake and overestimate it in later stages when
detailed damage data are available. This misrepresentation of ground motion uncertainty
leads to inaccurate estimations of damage and loss, particularly for metrics highly depen-
dent on ground motion parameters, such as estimations of economic impacts, which are
critical for emergency managers and insurance companies to allocate necessary funds to
respond to an earthquake (Bhattacharjee et al., 2022; Doggett and Fobert, 2013).

Ground motion uncertainty has been previously identified to affect the results of damage
assessment (Bommer and Crowley, 2006; Ioannou et al., 2015). Nonetheless, previous works
in improving estimates of damage after earthquakes have mostly focused on addressing
structural response uncertainty using fragility curves and stochastic modeling in specific
structures (Celarec and Dolsek, 2013; Liel et al., 2009; Rota et al., 2014; Vamvatsikos and
Fragiadakis, 2009). Some works have highlighted the need for improving the modeling of
ground motion uncertainty in building damage assessment (Abrahamson and Bommer, 2005
and Borgonovo et al., 2013) but, as of now, there is no quantification of these impacts in
damage assessment using real ground motion data. For the ShakeMap, Kircher (2002)
recognized the need to decrease the uncertainty in the Hazus methodology when input seis-
mic data come from a ShakeMap. However, even when this modification improves the val-
ues of uncertainty in the damage estimations, this modification still treats ground motion
uncertainty as a constant value that does not change throughout the post-earthquake period.

With this gap in incorporating dynamically evolving ground motion uncertainty in dam-
age assessment, this article quantifies the effect of incorporating the evolution of ground
motion uncertainty, namely uncertainty in the PGA, in damage assessment methodologies.
For this purpose, we consider ground motion data from two events: the Indios 2020 earth-
quake in Puerto Rico and the South Napa 2014 earthquake in California. In addition to
the ShakeMap analysis of these events, we propose a methodology to quantify the impact
of the evolution of ground motion uncertainty in two widely used approaches for building
damage assessment: the revised Thiel-Zsutty (TZR) model and Hazus loss methodology.
The proposed methodology considers damage from ground motion and not from ground
failure (e.g., fault rupture, lateral spreading, liquefaction, and landslides).
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The remainder of the article includes a description of uncertainty parameters in the
ShakeMap, followed by a quantification of the evolution of earthquake parameters in evol-
ving versions of the ShakeMap for both earthquake events. Then, a description of the two
damage assessment methodologies is described, along with the proposed process to expli-
citly incorporate evolving ground motion uncertainty into these methodologies. The result-
ing damage state distributions from implementing the proposed approach are compared
with those from current methods to demonstrate the effect of including dynamically evol-
ving ground motion uncertainty information in the estimation outcomes of post-disaster
building damage states.

Uncertainty in the ShakeMap

A ShakeMap provides information on multiple earthquake parameters to quantify the
severity of an earthquake. This data set is the primary data set used for rapid post-
earthquake analysis, given that it is consistently published for all significant earthquakes
and relies on large networks of seismometers across the world (Wald et al., 2005). The
ShakeMap is based on information from three sources: ground motion recordings from
seismometers, ground motion models (GMMs), and survey “Did you feel it?” (DYFI)
responses from people who experienced the earthquake. Records from seismometers are
processed to determine the epicenter by interpolating the values of the earthquake para-
meters (Worden et al., 2018). Then, a combination of GMMs is chosen to model the
attenuation of ground motions around the epicenter. Finally, DYFI data improve the
reliability of intensity measures with questions related to observed damage and people’s
experiences (Atkinson and Wald, 2007).

The first version of the ShakeMap is typically released 20 min after an event with signif-
icant uncertainties, given the use of only part of the seismometer network, suitability of the
initially chosen GMMs, and inherent uncertainties in the responses of the DYFI surveys
(Wald et al., 2008). These uncertainties are quantified and included in each version of the
ShakeMap, where each parameter is modeled as a lognormal distribution characterized by
its two parameters, median and lognormal standard deviation. For example, the cumula-
tive distribution function (CDF) of the PGA in the ShakeMap is presented in Equation 1.

1 X
P(PGA=x|PGApeq, B,) = ®|—1 , 1
(POA=NP G i) = 0 m

where @ is the standard normal CDF, PGA,,4 is the median PGA reported in the
ShakeMap, and B, is the lognormal standard deviation (uncertainty parameter) reported
on the ShakeMap. This notation is extended to damage assessment methodologies such as
Hazus where B, indicates the uncertainty coming from the hazard demand.

Each data source provides information on the uncertainty of the earthquake para-
meters (Wald et al., 2008). First is the influence of any proximal seismometer recordings.
Second is the uncertainty from the GMMSs, which is higher near the epicenter due to mod-
eling complexities. Third, especially in areas with low seismometer density, are DYFI data
points, where an increased number of survey responses decrease the uncertainty in the
earthquake parameters. Having multiple versions of the ShakeMap introduces a dynamic
evolution component to estimating these earthquake parameters. This evolution is exam-
ined more closely in the following section.
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Evolution of seismic hazard parameters

This section illustrates the evolution of earthquake parameters using data from two events:
the Mw 6.4 Indios, Puerto Rico, earthquake in 2020, and the Mw 6.0 Napa, CA, earth-
quake in 2014 (USGS, 2014, 2020). These events are selected as recent events with varying
instrumentation and data availability characteristics to show the generalizability of the
approach across seismic events. In addition, both events have similar magnitudes and
allow for comparisons across events of different instrumentation. ShakeMap data were
downloaded using the Comprehensive Catalog (ComCat) from the Advanced National
Seismic System (ANSS). This section describes the data sources from each event. It then
discusses the spatial distribution in various versions of the ShakeMap per event and the
evolution of PGA distributions at specific locations with varying distances from the epi-
center and uncertainty levels.

Data sources by event

Figure 2 illustrates the data sources for both events, estimated epicenter, and the distribu-
tion of PGA across the area. Individual seismometer locations are shown, and the DYFI
data are shown to the nearest 1 km-by-1 km grid point. Median PGA distribution from
the final version of the ShakeMap is shown (version 10 for Indios, version 33 for Napa).
Each map also includes the three locations of analysis for each event that will be used at
the end of this section. Key properties of the two earthquakes are shown in Table 1.

Figure 2 and Table 1 highlight differences in data sources by event. For the number of
seismometers, there are only 31 used in Indios compared with 966 in Napa. The number
of DYFI data points also differs significantly with 1610 in Indios compared with 16,679 in
Napa. Multiple factors contribute to the difference in DYFI responses such as differences
in Internet infrastructure and awareness of earthquake technologies. The availability of
data across different sources influences the resulting ground motion parameter uncertainty
estimates for each event.

Evolving PGA distribution parameters across ShakeMap versions

Every new version of the ShakeMap augments or changes information from the multiple
data sources. In this way, the earthquake parameters evolve as they are continually
updated. Figures 3 and 4 illustrate the evolution of the median PGA (PGA,.q) and its log-
normal standard deviation (log opga or opga for simplicity) for both events. In Figure 3
for the Indios earthquake, versions 1, 3, and 8 are shown. In Figure 4 for the Napa earth-
quake, versions 1, 13, and 27 are shown. These versions are chosen as the initial ShakeMap
(V1), a middle version with more seismometers included, and the version after the finite
fault model (FFM) is included. The inclusion of the FFM provides information about the
size and shape of the fault rupture, which improves the modeling of the distribution of
ground motion intensity parameters.

From Figures 3 and 4, the changes in the estimated distribution of the PGA median are
visible. For the Indios earthquake, the PGA,,.q has two main changes across the versions.
First, from V1 to V3, the location of the epicenter shifts to the east. Second, from V3 to
V8, the rupture changes from a point source to a rectangular one. In the Napa earthquake,
from V1 to V13, there was a clear increase in PGA o4 in regions near the epicenter. Then,
from V13 to V27, the rupture is no longer modeled as a point but as a line.
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Figure 2. Data sources and peak ground acceleration from final version of the ShakeMap for the Indios
earthquake (left) and the Napa earthquake (right).

Table I. Summary properties for the Indios and Napa earthquakes

Event Indios Napa

Location 17.869 N 66.827 W Depth: 9 km  38.22 N 122.31 W Depth: || km
Origin time (local) 2020-01-07 04:24:25 2014-08-24 03:20:44

Magnitude (Mw) 6.4 6.0

ShakeMap versions 10 33

Seismometers 31 966

Total DYFI responses 1610 16,679

Ground motion model (GMM)  Abrahamson et al. (2014), Boore and Atkinson (2008)

Boore et al. (2014), Campbell
and Bozorgnia (2014), Chiou
and Youngs (2014)

For the lognormal standard deviation opga, there is also a clear evolution for both
events. For the Indios earthquake, given the fewer number of seismometers, opga in V1
and V3 is dominated by the parameters of the GMM considered in each version. As a
result, the highest ground motion uncertainty is at the epicenter and it decreases radially
with distance from this location (shown as a large dark purple circle). As more seism-
ometers and DFYI data are included from V1 to V3, clusters of lower opga appear as
pink spots. Finally, after the FFM is added in V8, the opga no longer depends on the
GMM because the ShakeMap algorithm assumes complete knowledge of the rupture geo-
metry (Worden, 2016). Instead, opga in V8 depends on the location of seismometers and
DFYT responses (shown as light-yellow spots).

The dynamics of opga are different for the Napa earthquake. The density of seism-
ometers makes opga relatively low for the initial versions. In V1, for instance, low opga
values are observed close to the sensors and increase with distance radially away from each
sensor. As more sensors are included in the analysis, opga decreases, shown on the map as
the values become lighter in color. This highlights the importance of having increased data
from seismometers. Additional visualizations of the ShakeMap parameters evolution can
be found at https://arcg.is/14uiWHO, including dynamic and interactive maps.
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Figure 3. ShakeMap evolution for the Indios earthquake (versions I, 3, and 8).
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Figure 4. ShakeMap evolution for the Napa earthquake (versions |, |3, and 27).

Varying distance from epicenter and uncertainty level

There is significant spatial variability of ground motion parameters across an area
impacted by an earthquake event. Therefore, this section analyzes the evolution of
PGA,cq and opga across three locations of varying characteristics:
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1. Coordinate with the highest PGA .4 post-FFM data,
2. Coordinate at a cluster of low opga near the epicenter, and
3. Coordinate at a cluster of low opga far from the epicenter.

In addition to varying distance from the epicenter and uncertainty level, the level of
shaking (i.e., PGA,,.q) varies at each location, with location A being the highest (post-
FFM data) and location C being the lowest. These three locations for each event are also
those used to illustrate the impacts of integrating evolving ground motion uncertainty into
the Hazus loss methodology described later in this article. Table 2 describes the parameters
for all locations and events, including information for two ShakeMap versions: pre-FFM,
which is V1 for both events, and post-FFM (V8 in Indios and V27 in Napa). Note that
opga also represents the value of seismic hazard uncertainty B (see Equation 1), which
will be used in later sections.

To better visualize the changes in these parameters across the ShakeMap versions pub-
lished in the time after the event, Figure 5 illustrates the evolution of PGA,.q (solid line)
and the bounds of the lognormal distribution (shaded area) for the three locations of anal-
ysis of both events (Indios in orange and Napa in blue). The bounds shown are one stan-
dard deviation away from the mean, and each circle indicates a new version of the
ShakeMap.

From Figure 5, the main observations are as follows:

1. There is a significant difference in the number of versions published. While after
2 days, there were 25 versions of the ShakeMap published for the Napa ecarth-
quake, there were only six versions for Indios. This is due to the differing data
sources available, and the possibility to frequently update the ShakeMap with data
from more sensors and DYFI responses for the Napa event. In addition, the Indios
earthquake had an offshore epicenter, making it more challenging to record.

2. The PGA distribution is subject to large changes during the first days after the
event as data from more seismometers and DYFI points are incorporated into the
ShakeMap and the distribution is updated to account for the new data that are col-
lected. In all locations of the Napa earthquake, PGA,,.q Was initially underesti-
mated. When comparing pre- and post-FFM, the increase in PGA;,.q was 507% in
location A, 65% in location B, and 120% in location C. PGA .4 from Indios is
more stable, not as a result of less uncertainty (as shown by the bounds), but from
the lack of additional data that are available to add. For both events, opga does
change, decreasing a maximum of 44% for Indios and 65% for Napa.

3. FFM inclusion is faster for the Napa compared with Indios earthquake (3.4 vs
7.6 days). Similar to the number of versions, this difference results from sensor
availability and the difficulties of modeling offshore earthquakes with high
accuracy.

4. Changes in the PGA distribution post-FFM are minimal. Following the inclusion
of the FFM, PGA ,..q varies less than 0.05 g and opga less than 0.05 log g in both
events.

5. A decrease in opga does not always result in narrower bounds. Analyzing the
shapes of PGA bounds reveals the compound effect of PGA,.q and opga, espe-
cially in the lognormal distribution since it is in the logarithmic space, in which
equal standard deviations do not result in the same shape of the distribution if the
values of the median are different. This behavior is evident in Napa’s location A,



Lozano et al. 9

Table 2. PGA median and lognormal standard deviation for locations of analysis

Parameter Indios Napa
Location A B C A B C
Longitude 66.8423°W  66.6165°W 67.0409°W 122.3262°W 122.2746°W 122.2592°W
Latitude 17.9534°N  17.9827°N 18.0938°N  38.3086°N  38.2725°N  38.0062°N
Distance to epicenter (km) 10.03 26.95 3549 13.38 9.16 30.12
Pre-FFM PGAmed (8) 0.32 0.29 0.13 0.14 0.23 0.05

apca (Bp) 0.78 0.70 0.67 0.27 0.25 0.23
Post-FFM PGA e (8) 0.58 0.24 0.15 0.85 0.38 0.11

apca (Bp) 0.55 0.39 0.48 0.16 0.11 0.08

Location A

Finite rupture

O/w =

1 | L 1 | | |
0 1 2 3 4 5 6 7 8 9 10

0.6 Location B
* : T T T T

Finite rupture

o Finite rupture
inite rupture ided (V8) -

| L | | 1 | |
3 4 5 6 7 8 9 10
Time after event [days|

‘-PGA bounds Napa PG A bounds Indios —o— PG A,,.q Napa —0— PG A,,.q Indios

Figure 5. PGA median and bounds (= one standard deviation) for the three locations of analysis.

where there is a decrease in opga post-FFM (0.27 in V1 vs 0.16 in V27). However,
given that PGA .4 increased from 0.14 to 0.85 g, the latter distribution is much
wider even when opga decreased.

6. The PGA distribution is highly dependent on data sources and the inclusion of
FFM. As a result of all previous observations, the bounds on the PGA distribu-
tions from Napa are narrower than those from Indios. In addition, for the Indios
earthquake, the inclusion of FFM has a relatively larger effect in decreasing the
opga because the high density of data points in Napa better captures the rupture
shape in the first days after the event.
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From Figures 3 to 5, there is a clear evolution in estimated earthquake parameters
throughout the post-earthquake period. Both the spatial and temporal distributions of
PGA show changes in median and standard deviation, and in particular, changes in
ground motion uncertainty (opga) are highly dependent on the data sources of the event
and if the FFM has been included or not. The next section quantifies the impact of these
changes in the results of damage assessment methodologies.

Impact on post-disaster damage assessment

This section investigates the impact of including the evolution of earthquake parameters
from the ShakeMap in the results of two damage assessment methodologies: the revised
TZR model and FEMA’s Hazus. These methods are selected as two widely used damage
and loss assessment methodologies. They also account for seismic parameter uncertainty
differently, enabling illustration of the incorporation and impact of ground motion hazard
uncertainty evolution information in two different approaches.

TZR model

The revised TZR model is a methodology that estimates the probability density function
(PDF) of loss based on the earthquake damageability of buildings (Thiel and Zsutty,
2017). The damage metric is called the scenario expected loss (SEL) and is calculated
based on three main factors:

1. Intensity of the ground motion,
2. Site-specific characteristics, and
3. Uncertainty factor.

The TZR model is widely used by insurance and financial companies for pre- and post-
disaster estimation of expected economic losses. Its simplicity of merging hazard para-
meters and building characteristics makes it useful for a broad and rapid estimate of
expected losses after an earthquake. A description of the TZR methodology, how ground
motion uncertainty is incorporated into the loss assessment, and the resulting impact of
including ground motion uncertainty in the estimations of post-disaster loss are provided
below.

TZR methodology

The TZR model consists of two steps: calculating a damage rate (Equation 2) and con-
structing a beta probability distribution for SEL (Equations 3 to 7). The damage rate is
calculated as:

p=0.651bm s a®:pec(0,1) (2)

where p is the damage rate, representing the ratio between the repair and replacement cost
(i.e., p = 1 when the repair costs equal the replacement costs); b is a factor representing
the building vulnerability; m is a factor representing the spectral matching (or liquefaction
susceptibility); s is a factor indicating soil type; and a is the PGA. For detailed descriptions
and values per structural system, refer to the work by Thiel and Zsutty (2017). The value
of the damage rate p from Equation 2 is then used to determine the parameters of the



Lozano et al. |

probability distribution of SEL, where SEL is modeled as a beta distribution with para-
meters A and v.

w=0.41p> — 0.296p*> +0.857p — 0.014 (3)
o = €(1.853p — 6.825p7 + 13.65p° — 13.11p* +4.51p°) (4)
(1 - p)p?
A=—3—n (5)
1 —
G ON ()
1
SEL(x)~Beta(x,A,v)Vx € [0, 1] (7)

An SEL value of 1 indicates complete damage and corresponding loss; a value of 0 indi-
cates zero damage and no loss. Note that the standard deviation o of the distribution of
SEL includes a parameter €, which represents the uncertainty factor of the problem and
characterizes the uncertainty in the results.

Integrating ground motion uncertainty: methods and results. To propagate the ground motion
uncertainty to the damage distribution in the TZR model, the uncertainty in the PGA
from the ShakeMap (opga) is introduced through parameter « in Equation 2. Rather than
treating it as a constant deterministic value, parameter a becomes a lognormal random
variable with time-evolving median PGA,.q and lognormal standard deviation opga.
Having a as a random variable transforms the SEL beta distribution parameters (A, v) to
random variables given their dependency. To illustrate the changes in the SEL distribution
by incorporating the dynamically evolving seismic hazard parameters, three values of the
PGA distribution are used: the median PGA,,.q and the two PGA values at = one stan-
dard deviation from the median.

Using the parameters for an unreinforced masonry building with an interior frame, as
shown in Table 3, and the ShakeMap of location A at both events, Figure 6 shows how the
SEL distribution changes with the varying parameters. Pre-FFM and post-FFM indicate
the resulting SEL distributions before and after a FFM is included, respectively. Changes
between distributions at the other locations show similar results and are not included here.

For both events, the increase in PGA .4 from pre- to post-FFM results in a shift of the
distribution to the right after FFM is added, increasing the probability of having greater
damage and correspondingly higher loss levels. In terms of uncertainty, the effect of opga
in SEL is evident in the change in the spread of the distributions once FFM information is
included.

In addition to assessing the overall distribution of SEL, a common use of the TZR
model is calculating the probability that SEL is higher than 0.2. Financial institutions in
particular use this model to estimate the economic impacts of an earthquake. Table 4
quantifies these values, reporting the probabilities pre- and post-FFM for both events.
The mean SEL values given a value of PGA are provided, and the P(SEL > 0.2) is sum-
marized. Also provided are the ranges at = one standard deviation of PGA,,.q for each
case.
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Table 3. TZR model parameters

Parameter Value
b 0.64
m |
s 1.25
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Figure 6. SEL distribution at location A of Indios earthquake (a) VI and (b) V8, and Napa earthquake

(c) VI and (d) V27.

Table 4. Scenario loss distributions using the TZR model for location A in both events

Event Finite PGALe.d Opgca Mean (SEL—PGA) P(SEL > 0.2)
fault  (g) (Bo)
data PGAned — 0 PGALey PGALg + 0 (W— 0, uu+ 0)
Indios  Pre 0.32 0.78 0.12 0.19 0.32 (0.16, 0.42, 0.83)
Post 0.58 0.55 0.20 0.29 0.41 (0.45, 0.75, 0.96)
Napa Pre 0.14 0.27 0.09 0.11 0.13 (0.10, 0.14, 0.21)
Post 0.85 0.16 0.33 0.36 0.41 (0.86, 0.92, 0.96)

In Table 4, the uncertainty in the estimated SEL is dependent on the amount of infor-
mation available for an earthquake event. The mean values of the SEL in Indios post-
FFM range from 0.20 to 0.41, whereas the effect of having 3.4 times lower PGA
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uncertainty (comparing opga values) makes the SEL distributions vary from 0.33 to 0.41
post-FFM for the Napa earthquake (Figure 6d). The effect of having more information,
for example, more seismometers, results in a narrower SEL probability distribution, which
is also shown in Figure 6b and d, decreasing the uncertainty in SEL and improving the
estimations of damage loss.

Similar results are seen in the quantification of P(SEL > 0.2), which for the Indios
earthquake post-FFM ranges from 0.45 to 0.96, a large range that indicates imprecise esti-
mates of damage due to the event. On the contrary, having a large network of sensors for
the Napa earthquake results in a smaller estimation range of P(SEL > 0.2) from 0.86 to
0.96 after FFM is added. Still, even with less information for the Indios earthquake, an
improvement in estimated SEL, measured by decreased opga when accounting for evol-
ving PGA parameters between the pre- and post-FFM versions of the ShakeMap, is
observed. The * one standard deviation range of P(SEL > 0.2) decreases from 0.67 to
0.51, indicating a smaller range in the estimate post-FFM compared with pre-FFM infor-
mation. The range of the mean SEL value for the Napa earthquake increases for the post-
FFM compared with pre-FFM estimate. This is due to the increase in PGA,,,.q and conco-
mitant increase in uncertainty for the higher intensity earthquake event. However, the
post-FFM information result is considered to be a more accurate assessment of SEL as
the most up-to-date seismic hazard information is included in the calculation.

The TZR model currently accounts for fragility uncertainty and mainly focuses on
structural parameters. The results in this section show that in addition to structural
response uncertainty, including ground motion uncertainty that considers the location of
the event, its intensity, and its data sources, can result in improved uncertainty quantifica-
tion and loss scenarios that better represent the total uncertainty in the building damage.

Hazus loss assessment

The Hazus earthquake loss methodology is one of the most widely used tools for post-
disaster building damage assessment (Kircher et al., 2006). Developed by FEMA, this soft-
ware assesses direct physical damage to infrastructure (e.g., buildings, critical facilities, and
utility systems) based on ground motion data. In addition to damage assessment, Hazus
complements its results by estimating economic losses, casualties, and induced physical
damage (i.e., debris and fires) (FEMA, 2020). Hazus can also be used for pre-disaster miti-
gation by analyzing potential outcomes from multiple hazard scenarios. In the context of
this article, we focus on the products used immediately after an earthquake, that is, those
that provide damage estimations based on ShakeMap ground motion data.

Hazus methodology. To describe how to incorporate ground motion hazard uncertainty
information into updates of damage assessment in Hazus, it is necessary to understand
how hazard data are used in the methodology. The process from hazard information to
damage assessment is summarized in four steps:

1. Computing the demand spectrum. This curve is calculated using three parameters
from the ShakeMap: PGA, pseudo-spectral acceleration at 0.3 s (PSAg3s), and
pseudo-spectral acceleration at 1 s (PSA; ).

2. Computing the building capacity curve. The structural parameters needed to build
the curve can be found in the Hazus manual (FEMA, 2020).



14 Earthquake Spectra 00(0)

3. Finding the performance point. This point is located at the expected spectral dis-
placement, S, of the building, which is found by joining the reduced demand spec-
trum (a variation of the curve from step 1) and the capacity curve from step 2. The
reduced demand spectrum is computed from the demand spectrum of step 1 and
following the procedure in FEMA P-155 Section 5.3.5 (FEMA, 2015).

4. Determining damage state, ds, exceedance probabilities with fragility curves. These
curves quantify the probability of the building exceeding each damage state for a
given spectral displacement S, Hazus considers five damage states (i.e., None,
Slight, Moderate, Extensive, and Complete). Definitions of every damage state per
structural system can be found by FEMA (2020). The probabilities from these
CDFs can then be used to calculate the probability of the building being in each
damage state ds.

In summary, the Hazus damage assessment tool uses ShakeMap ground motion data
combined with building parameter information to generate a distribution of the probabil-
ities of a building being in each damage state.

In this procedure, step 4 accounts for the uncertainty in the random variables. The use
of fragility curves helps to model the connection between ground motion and structural
uncertainty. In Hazus, as with seismic variables from the ShakeMap, building fragility
curves are modeled as cumulative lognormal distributions, as shown in Equation 8.

1 Sa
L (S_)] ®)

where Sy 4 is the median displacement threshold of each damage state, B, is the total
uncertainty on damage state ds, and ®() is the standard normal CDF. The uncertainty on
each damage state B is represented by:

Plds|Sq] = ©

Bus = \/CONV (B, BerSum) + B2 9)

where Bp is the ground motion uncertainty (i.e., from the ShakeMap), B¢ is the uncer-
tainty in the capacity curve (e.g., 0.25 for high-code buildings), and B is the uncertainty
in the damage state threshold (i.e., 0.4 for all building types (FEMA, 2020)). CONV() rep-
resents the convolution of demand and capacity uncertainties, which is needed because the
reduced demand spectrum calculated in step 3 depends on the demand spectrum and the
capacity curve. This convolution combines both the ground motion and structural uncer-
tainty. However, it requires the combination of multiple non-symmetrical probability dis-
tributions, which increases the computational cost. Thus, Hazus assumes that B is
constant throughout the analysis.

In contrast, this article argues that leaving 8, constant neglects important factors that
affect the ground motion uncertainty. For example, it fails to take into account event-
specific parameters such as seismometer density and other data sources, which update
information about the location of the epicenter, acceleration magnitude, and rupture char-
acteristics. The following section presents a methodology to overcome this assumption
and include ground motion uncertainty information in Hazus damage assessment results.
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Integrating ground motion uncertainty: methods and results. To modify Bp as new ShakeMap
versions are published, a Monte Carlo simulation-based approach to obtain distributions
of the building damage states is developed. This simulation allows for calculating the con-
volution of all random variables without the need for a closed mathematical form. Each
simulation scenario requires the sampling of three random variables, which are lognor-
mally distributed: the demand spectrum that comes from the ShakeMap (with o = Bp),
the capacity curve that depends on the building (with ¢ = B¢), and the damage state
thresholds that depend on post-earthquake damage data (with o = B7) (FEMA, 2020).

Taking the previously described four-step damage assessment process as a guide, the
goal is to generate a distribution of the performance points leading to a distribution of esti-
mated building damage states. This four-step process is the simplified version of the Hazus
methodology, which uses expected spectral displacement and has ground motion uncer-
tainty built into the fragility functions. Figure 7 depicts this process for a single version of
the ShakeMap. The process consists of three main stages composed of five listed steps.
First is a sampling stage (steps 1 and 2), where N samples of the demand spectrum and
capacity curves are generated. These curves are sampled using Monte Carlo simulations,
which use the distribution parameters of each ShakeMap version B8, and the building
parameters and uncertainty 8. The sampling process of the demand spectrum considers
the correlation between PSA, ;3 and PSA, o by sampling correlated lognormal realizations
using the covariance published by Loth and Baker (2013, 2020). The resulting correlation
has a value of 0.45. The resulting samples of PSA, ; and PSA, ¢ are then used to compute
the demand spectra following the procedure presented in Section 5.6.1.2 of the Hazus
earthquake technical manual (FEMA, 2020).

The second stage is a performance point stage (steps 3 and 4.1) where N performance
points are found by merging the reduced demand spectrum and capacity curves. Then,
using all N values of the performance point, a distribution of the points is computed. Third
(steps 4.2 and 5), using the shape of this distribution and the damage thresholds S; 4 per
damage state, a distribution of the five damage states (None, Slight, Moderate, Extensive,
and Complete) is found.

Aside from the simulation of multiple random variables, the main difference between
this methodology and the current Hazus methodology is step 4 in Figure 7. Fragility
curves cannot be used in the proposed methodology as in the current Hazus methodology
because these functions aggregate all the uncertainty from the variables into one probabil-
ity distribution (see Equation 9). The existing method does not allow one to incorporate
the evolution of ground motion uncertainty B, as new information is collected. Instead,
the proposed methodology generates Monte Carlo simulations of all the variables in the
problem separately, allowing for the parameters of each variable to change with every
ShakeMap version. Thus, in step 4.1 of the proposed methodology, all NV simulated perfor-
mance points are joined to build the three-dimensional (3D) histogram of the performance
point distribution (step 4.1 in Figure 7). Then, in step 4.2, damage state thresholds are
sampled knowing that they are lognormally distributed with parameters Sy 4 and B,
which depend on the damage state ds and the structural system of the building. For a
given scenario i € N, all four damage state thresholds are sampled (not including “None,”
i.e., S; = 0), and then, the probability of being at each damage state is found by integrat-
ing over the range of S, and the sampled thresholds of consequent damage states (i.e.,
from Sy 45, t0 Sy a5+1,) as in Equation 10.
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Figure 7. Simulation process for generating damage state probabilities.
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The integration is performed by finding the volume under the polygon of the perfor-
mance point distribution and formed by the damage state ds and the next higher damage
state (step 4.2 in Figure 7). Since the output of the simulation of the performance point
PDF is discrete, the integral can be solved numerically by summing over the values of the
PDF that fall between the limits in Equation 10.

A further step is needed to quantify damage state probabilities because the probabilities
resulting from Equation 10 only account for one scenario i. Looking over multiple scenar-
ios i € N, the probability of being in each damage state is presented in Equation 11, which
converges to the probability of being in each damage state when the number of samples N
is sufficient (i.e., the variance of the distribution converges).

P[DSZdS]zM (11)
N

To evaluate the impact of including ground motion uncertainty in Hazus damage
assessment, the simulation procedure as shown in Figure 7 is implemented for both the
Indios and Napa earthquakes, using all three locations of analysis (A, B, and C), and two
versions of the ShakeMap: one before the FFM is added (version 1, called pre-FFM), and
the other after FFM is included (version 8 in Indios, 27 in Napa, called post-FFM). The
parameters used for the analysis are listed in Table 5. Structural system CI1 represents a
reinforced concrete moment-resisting frame. In total, 500,000 Monte Carlo simulations
were used to generate the performance point distributions and damage state probabilities.
The number of samples was validated using a variance convergence study, where the var-
iance of S, was monitored until it plateaus, that is, reaches convergence or the difference
between the last five realizations is less than 0.1%. The convergence is required to confirm
that the tails of the distribution are sufficiently sampled. The time required to run the
simulation for a single building is 2.8 s, which demonstrates the usefulness of the proposed
methodology for rapid damage assessment. In addition, parallel simulations can be used if
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Table 5. Building parameters for Hazus methodology analysis

Parameter Value
Structural system Cl

Height Mid-rise
Fundamental period (s) 0.75
Code level High code
Soil type D

needed given that each realization is independent. An Apple M1 Pro processor was used
to run the simulation process. Table 6 shows the results for all performance point distribu-
tions in the analysis.

To better visualize the differences between performance point distributions, Figure 8
shows the distributions for both events and ShakeMap versions at location B (coordinate
at a cluster of low uncertainty near the epicenter). For the Indios earthquake, between the
pre-FFM and post-FFM versions, there is a decrease both in the PGA and its uncertainty.
As a result, the spectral displacement’s standard deviation ogq decreases from 10.16 to
1.21 in, resulting in a narrower distribution post-FFM data compared with the distribu-
tion using information from the first ShakeMap version (see Figure 8a and c).

In comparison, for the Napa earthquake, even though the PGA uncertainty decreases
in later versions of the ShakeMap (from 0.26(log g) at V1 to 0.11(log g) at V27), the distri-
bution of the performance point is wider in the post-FFM version (see Figure 8b and d).
This is due to the uncertainty in the capacity curve, which increases for larger values of
ground displacement. For this case, the median PGA increased from 0.23 to 0.38 g from
the pre-FFM to post-FFM versions. With the corresponding increase in capacity curve
uncertainty, the convolution of the random variables results in a wider distribution for the
performance points. Looking at the two events, the results emphasize the importance of
considering each component of the uncertainty in the problem, including uncertainties in
the capacity curve, damage state threshold, and ground motion parameters. In this case,
accounting for the evolution of the ground motion uncertainty leads to changes in the
uncertainties in both the capacity curve B¢ and ground motion Bp.

Following the computation of performance point distributions, the damage state histo-
grams are calculated according to the third stage of the process as shown in Figure 7.
These histograms are shown in Figure 9 for the three locations of each event considered.
Each subplot includes two histograms. First is the histogram using the methodology of
implementing a dynamic ground motion uncertainty Bp (i.e., following the process pro-
posed in Figure 7). Second is the histogram that results from using the current Hazus
methodology, which changes the value of the ground motion median (i.e., PGA,.q) wWith
updated information from the ShakeMap, but not the ground motion uncertainty (8p,
which is equal to 0.5 regardless of the location or ShakeMap version).

The results in Figure 9 show the importance and impact of including dynamic ground
motion uncertainty Bp in post-disaster building damage assessment. Changes in resulting
damage state distributions across versions, in this case, pre- and post-FFM, are observed.
Including the dynamic Bp results in either narrower or flatter damage state distributions
depending on the event, specific location, or ShakeMap version. Across all cases, the aver-
age change of the probability of the damage state with maximum probability between
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Figure 8. Performance point distributions for Indios ((a) and (c)) and Napa events ((b) and (d)) at
location B.

using a dynamic compared with constant Bp is 13%. This number highlights the impact of
considering evolving ground motion uncertainty in the analysis. Additional observations
and examination of specific changes to the damage state distributions based on the results
as shown in Figure 9 are as follows.

Including dynamic Bp results in narrower distributions in most cases. As a result, there is prob-
ability content more concentrated in a subset of the damage states, representing decreased
uncertainty in the building damage assessment results. This effect can be seen in the results
for the Indios earthquake at location C and for the Napa earthquake at locations A, B,
and C. For example, at location B for the Napa earthquake pre-FFM, the dynamic 8 dis-
tribution is concentrated in the Slight damage state, with 0.18, 0.56, and 0.26 probability
of being in the None, Slight, and Moderate damage states, respectively. In comparison,
the constant B, distribution is flatter (i.e., higher uncertainty), with 0.22, 0.37, and 0.37
probability in the same damage states.

Large values of dynamic Bp can produce damage state distributions with higher uncertainty than
using a constant Bp. With pre-FFM information at locations A and B for the Indios earth-
quake, the distribution for the dynamic B is flatter compared with the constant 8p, indi-
cating higher uncertainty in the distribution. This is not an error of the proposed
methodology; instead, it is a more realistic and accurate representation of local properties,
such as the lack of seismometers and information sources. Dynamic B8p, in this scenario, is
0.78 and 0.71 at each location, respectively, which is higher than the value used in Hazus
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Figure 9. Damage state histograms for the Indios and Napa earthquakes. Each plot includes one
histogram using a dynamic B as proposed in this study and the other using a constant 3y following the
current Hazus methodology.

(0.5). These outcomes show the flexibility of the approach described in this article in incor-
porating ground motion uncertainty information to be able to accommodate data sources
that are different for every event and location.

Including a dynamic Bp can change the most probable damage state. For example, this is evi-
dent at location A for the Indios earthquake. The pre-rupture estimation using a constant
Bp results in a most likely Moderate damage state for the building, that is, the Moderate
damage state has the highest probability among the five possible damage states. In com-
parison, incorporating the dynamic 8 results in a most likely damage state of Slight. This
change can result in significant differences when calculating economic losses, as they typi-
cally do not scale linearly with damage states (Ramirez et al., 2012).

When the value of dynamic Bp is similar to the constant Bp, the resulting damage state distribution
is narrower. Having a dynamic ground motion uncertainty means that a value of 8 can be
close to the constant value used in Hazus (0.5). At location B for the Indios earthquake,
for example, the dynamic Bp post-FFM is 0.48, which is close to the constant value used
in Hazus (0.5). Therefore, the results should be similar. They are not the same, however,
because properly convolving all random variables including dynamic ground motion
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uncertainty B8 by following the proposed procedure in Figure 7 results in a treatment for
damage state uncertainty that is more representative of actual event conditions, compared
with the assumption made in Hazus, which uses a single lognormal function to account for
all uncertainty sources in a damage state (see Equation 9). In fact, the values of dynamic
Bp of the PSA( 5 s and PSA; ¢ are 0.59 and 0.58, respectively, meaning that there was larger
uncertainty when building the demand spectrum than accounted for in the Hazus proce-
dure with constant Bp. Even so, the resulting distribution using the dynamic B is nar-
rower than that obtained using the existing Hazus approach. This example demonstrates
that the current Hazus methodology is potentially overestimating the total uncertainty of
damage states.

The distribution of damage states between events is less variable for the Napa compared
with Indios earthquake, due to the increased data sources for ground motion parameter
estimation leading to lower uncertainty values. Thus, there is less uncertainty in the out-
comes than using the constant value used in Hazus. For instance, at location B for the
Napa earthquake, both pre- and post-rupture histograms have more concentrated prob-
ability values compared with the results from using the constant 8p. The difference in
uncertainty makes the post-FFM distribution include probability content in only three
damage states, with the Moderate damage state accounting for 79% of the probability.
On the contrary, the results from Hazus include probability content in all five damage
states.

The effects of dynamic Bp can also be appreciated in locations far from the epicenter, as in location
C. When comparing the distributions of both events, the variance of damages states in the
Indios event is higher than in Napa, even when the values of PGA are relatively low and
similar in both events. Note that the results between Hazus distributions in both events at
location C are also different. This change results from the dependence of the effects on
multiple pseudo-spectral accelerations (i.e., PSAg 3 s and PSA; ;) that are not reported in
this article. Thus, while the PGA values for the case of location C post-rupture differ by
36% (0.15 g in Indios vs 0.11 g in Napa), the values of PSA;  differ by 116% (0.11 g in
Indios and 0.05 g in Napa).

As shown from the distributions’ results, the inclusion of dynamic ground motion
uncertainty more accurately represents the uncertainty that exists in estimating post-
disaster building damage states and often results in narrower damage state distributions
indicative of decreased uncertainty in damage assessment. It accounts for the full informa-
tion that is available to characterize the ground motion, including evolution of the uncer-
tainty in ground motion parameters in the time period after the event. In some cases, the
shape and values of the damage state probability distributions significantly differ in using
the dynamic compared with constant B8 value for ground motion uncertainty. In addi-
tion, the simulation approach for the random variables allows for capturing local proper-
ties such as the amount of information collected at different stages in the time period after
the earthquake event. These improvements significantly impact economic assessments and
all methodologies that depend on damage assessments, such as debris management, loss
estimation, and population exposure.

In the case of estimating economic impacts of an earthquake, the results of these distri-
butions are highly dependent on the distribution of damage states, given that the expected
value of economic loss per building is calculated by multiplying the probability of being in
each damage state by the expected repair/replacement cost of the building. Thus, even if
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the damage state with the highest probability is the same between the proposed methodol-
ogy and current Hazus calculations, it is the values of the probability of the building being
in each damage state that is used to obtain the economic loss of the building. Varying
probability content, as is found from using the dynamic compared with constant 8p, will
result in different economic impact values. This consideration is especially relevant in the
calculation of the cost of high-damage states, which grow exponentially and not linearly
compared with the costs associated with lower-damage states (Ramirez et al., 2012). Thus,
having a more accurate estimation of the uncertainty in building damage states can lead
to improved economic loss distributions, both in terms of increased accuracy and lower
uncertainty, which are crucial for an effective response to the earthquake.

Implementing the proposed approach for damage assessment

The previous sections demonstrate that dynamic ground motion uncertainty can be suc-
cessfully integrated into both the TZR and Hazus damage assessment methodologies. Both
methodologies showed improved accuracy in the resulting damage distribution by incor-
porating the available information on ground motion hazard uncertainty, often resulting
in narrower, that is, decreased uncertainty, distributions compared with the constant case.

To leverage the evolution of the ground motion uncertainty information available for
use in post-earthquake damage assessment, the proposed methodology should be imple-
mented multiple times as new versions of the ShakeMap are released after an event.
Having an estimation of damage using the latest values of ground motion parameters is
critical to achieving the highest accuracy and resolution of damage assessment possible
when other detailed damage data are not available.

Given the input data required for each method, some limitations and comparisons
should be considered when implementing the proposed methodology. In the case of the
TZR model, the proposed procedure should be implemented when there is limited informa-
tion about the building inventory and local properties. Incorporating the dynamic ground
motion uncertainty allows for calculating different risk scenarios for post-disaster loss by
using the updated beta distributions of the SEL. The resulting continuous distribution of
SEL is useful when computing economic impacts at the aggregate level in large regions
where building inventory data are not available. On the contrary, for the Hazus model, it
is required to know detailed information about the building’s structural system and the
underlying soil characteristics to obtain accurate detailed results when combining these
data with ground motion information. This information, however, is limited to the United
States for Hazus. Thus, when implementing the proposed methodology, it is required to
collect all necessary data to observe the benefit of including a dynamic ground motion
uncertainty in the analysis.

Conclusion

Detailed assessments of building damage after an earthquake are time and resource-inten-
sive. Therefore, hazard-related data sets are highly valuable for estimating building damage
in the immediate post-disaster period as these data sets are published within the first hours
of the event. USGS’s ShakeMap is one of these data sets, which provides detailed descrip-
tions of ground motion parameters and their evolving uncertainties during the disaster
response period. Information about the evolving ground motion uncertainty in earthquake
parameters, however, has not been previously used in post-disaster building damage
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assessment or incorporated into models of the total uncertainty in current damage assess-
ment methodologies. Thus, this article combines the uncertainty evolution of seismic
hazard parameters from USGS’s ShakeMap with the earthquake loss methodologies from
the revised TZR model and Hazus to evaluate the impact and demonstrate the need to
incorporate dynamic ground motion uncertainty in damage assessment methodologies.

Using data from Puerto Rico’s Indios earthquake in 2020 and the South Napa earth-
quake in 2014, it is first shown that ground motion uncertainty not only varies by event
but also by location and time. For instance, for the Napa event, the estimated median
PGA at the same location coordinate varied by up to 55% within the first 3 days of the
earthquake. Similar changes in estimated PGA standard deviation were found. These
changes have a significant impact on the resulting distributions of building damage states
in the methodologies that depend on these ground motion parameters. Among the poten-
tial impacts are narrower distributions with probability content concentrated in fewer dam-
age states, representing results with lower uncertainty and higher precision, and changes in
the most probable damage state.

In the case of the TZR model, including ground motion uncertainty as a dynamic para-
meter results in improved estimation of exceedance probabilities of damage, resulting in
narrower ranges for SEL estimates, which are widely used by financial entities for eco-
nomic impact estimates in post-disaster contexts such as for insurance claims. The pro-
posed inclusion of dynamic ground motion uncertainty also enables quantification of
uncertainty in the results, usually represented by a variable that accounts for qualitative
measures such as level of knowledge.

Compared with current Hazus methodologies, introducing dynamic uncertainty from
the ShakeMap allows loss assessments to account for local features such as seismometer
density, pre-existing knowledge of geology, and post-event collected data. The damage
state distributions from Figure 9 show that including dynamic ground motion uncertainty
can result in changes in the damage state of maximum probability. A comparison of the
results of damage state distributions from the proposed methodology with those from the
current Hazus methodology shows that Hazus potentially overestimates the total uncer-
tainty in building damage by assuming a single probability distribution for all uncertainty
sources. In addition, the average change of the damage state with maximum probability
between the existing and proposed methodologies is 13%.

While most efforts to study uncertainty in building damage assessment have focused on
modeling the structural response, this work focuses on improving the integration of the
dynamic uncertainty of estimated ground motion parameters in damage assessment meth-
odologies. This article does not consider damages from ground failures such as fault rup-
ture, lateral spreading, liquefaction, or landslides given that the proposed methodology
utilizes earthquake fragilities that depend on ground motion and not failure. Such studies
can be the subject of future work. In addition, the sampling of random variables using
Monte Carlo simulations in the proposed approach cannot be compounded for multiple
locations, given the spatial correlation of the earthquake parameters. Further work can be
conducted to improve the model to incorporate the spatial correlation and produce aggre-
gate estimations of damage in a region.
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