
Sustainable Cities and Society 84 (2022) 104025

Available online 24 June 2022
2210-6707/© 2022 Elsevier Ltd. All rights reserved.

Assessing the Impacts of Air Quality Alerts on Micromobility 
Transportation Usage Behaviors 

Lei Xu, John E. Taylor *, Iris Tien 
School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr NW, Atlanta, GA, 30332, United States   

A R T I C L E  I N F O   

Keywords: 
Air pollution 
Air quality alerts 
Micromobility 
Scooter 

A B S T R A C T   

To address the severe risks imposed by air pollution, governments around the world have prioritized air quality 
information disclosure and alert dissemination with a goal to evoke awareness and ultimately encourage 
behavior changes. Daily transportation behavior not only contributes to air pollution formation but also impacts 
personal exposure. Previous studies have identified mixed results about the effectiveness of air quality alerts in 
encouraging transportation behavioral changes. However, little is known about the impacts on micromobility 
usage, a newly introduced transportation mode, which directly exposes the riders to the ambient environment 
and usually takes place in heavy traffic areas. In this study, we conducted a case study in Austin, TX, analyzing 
over 6.9 million trips collected between April 2018 and September 2019. A Poisson multivariate regression 
model was applied to assess the relationship between air quality alerts and usage of micromobility vehicles. The 
results indicate that air quality alerts in the form of Ozone Action Days do not alter micromobility usage 
behavior, while the public does significantly change their usage behaviors in response to actual ambient air 
quality for short duration trips. Numbers of longer distance micromobility trips were not found to be sensitive to 
actual air quality. The findings of this study have important implications for policymakers: government agencies 
should carefully consider timing, accuracy, and message clarity when delivering air quality information to the 
public.   

1. Introduction 

Air pollution is a longstanding and troublesome issue facing gov-
ernment agencies around the world due to its severe impacts on both 
public health and well-being, and economic growth. However, after 
decades of efforts, the “State of the Air 2021” report still found that 
nearly 135 million people, or over 40% of the population, in the U.S. 
were still living in areas with unhealthy air quality levels, which put 
them at risk of excessive morbidity and mortality (American Lung As-
sociation, 2021). The widely acknowledged association between air 
pollution and occurrences of respiratory and cardiovascular disease 
(Hoek et al., 2013; B.-J. Lee et al., 2014), and even susceptibility to 
infectious disease such as COVID-19 (Wu et al., 2020; Xu et al., 2022), 
demands that global governments prioritize policies to address air 
pollution. 

The success of such air pollution policies rely heavily on not only 
technical solutions like monitoring, modeling, and predicting the air 
quality, but also public behavioral responses (Petts, 2005). Public 
engagement is a key to addressing this problem. It was found that active 

public participation in the decision making process of alleviating air 
pollution could effectively improve air quality (Leng, Zhong, & Kang, 
2022). However, though the general public is aware of high concen-
trations of air pollutants in certain areas, they are often oblivious of the 
extent to which they are exposed to air pollution in their surroundings 
(Delmas & Kohli, 2020). One of the obstacles in increasing people’s 
awareness of ambient air quality is that it is usually neither visible nor 
perceptible to the public, and people’s perceptions of air quality may be 
wrong (Kim et al., 2019; Schmitz et al., 2018). Thus, efforts have been 
made to enact air quality information communication policies to make 
local air quality information more accessible to the public with a goal of 
persuading behavioral changes towards more healthy and sustainable 
ones (Ahmed et al., 2020; Bickerstaff, 2004). Many metropolitan areas 
in the U.S., for example, engage in air pollution action days by sending 
out air quality alerts when the concentration of certain pollutants on the 
following day is predicted to exceed the pre-defined limits. The air 
quality alerts not only deliver information about the health impacts of 
air pollution but also encourage environmentally friendly behaviors to 
reduce air pollution formation, since public participation in collective 
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actions has been proposed as a promising direction for environmental 
policy (Lubell et al., 2006). Air quality alerts are usually disseminated 
through local news, government websites, social media, and opt-in 
emails. Evaluating the effectiveness of air quality information commu-
nication approaches in persuading behavioral changes is critical for 
informing decisions relating to such policies. 

Our daily transportation behavior is a major contributor to air 
pollution formation and the corresponding risks of exposure. First, 
transportation emissions have long been recognized as a major 
contributor to overall air pollution and the pollutants in vehicle exhaust 
are closely associated with increasing morbidity (Pinto et al., 2020; 
Samoli et al., 2016). It was estimated that nearly 385 thousand deaths 
and $1 trillion in health damages were associated with tailpipe emission 
induced air pollution in 2015 (Anenberg et al., 2019). Second, a large 
part of our daily air pollution exposure results from our transportation 
behaviors, which is especially true in vehicle-intensive metropolitan 
areas and locations with high proximity to traffic (Karanasiou et al., 
2014; Knibbs et al., 2011; Zuurbier et al., 2010). Time spent in trans-
portation accounts for about 21% of personal exposure and 30% of 
inhaled black carbon (Dons et al., 2012). Therefore, it is necessary to 
reduce air pollution exposure during transport-related activities. 

Due to the critical role played by transportation activities, re-
searchers have examined the responses of transportation behaviors to air 
quality alerts. In previous studies on driving behaviors, Henry and 
Gordon (2003) found a significant decrease in miles driven by govern-
ment employees but no impact on daily driving trips and miles driven by 
other groups in Atlanta on air quality alert days. Cutter and Neidell 
(2009) found a significant reduction in daily traffic volume in the San 
Francisco Bay area but none on daily public transit use in response to air 
quality alerts. Another study in Salt Lake City, Utah, also investigated 
changes in traffic volume in response to air quality alerts but found no 
significant changes, but did observe decreases in the downtown area and 
increases in the outlying mountain areas (Tribby et al., 2013). Noonan 
(2014) investigated the driving behavioral responses to air quality alerts 
in over 300 cities across the U.S. and found only weak evidence to 
support a finding of a decrease in driving time. 

In contrast to the pessimistic results on response from driving be-
haviors, recent studies on cycling behaviors present promising findings 
that cyclists might change their behaviors in response to air quality in-
formation. For example, air quality alerts significantly reduced the 
number of daily cycling trips in Sydney, Australia (Saberian et al., 
2017). Morton (2020) also examined the association between cycling 
behavior and air quality in London finding that increased ozone level 
was linked with lower levels of cycling demand, while higher PM10 
concentration was associated with more cycling trips. Another study in 
Beijing, China also showed that hazy weather could significantly change 
cycling behaviors (Zhao et al., 2018). Compared to driving, cycling 
directly exposes the riders to the ambient environment and the physical 
demand of pedaling increases the amount of air inhaled, which may 
explain the observed significant association between cycling behaviors 
and poor air quality information. 

With increasing urbanization, shared micromobility is becoming a 
popular solution to congestion, emission issues, and first/last mile 
problems (Baltimore City Department of Transportation, 2019). Similar 
to cycling, though without the need to pedal, riding on a micromobility 
vehicle exposes the rider to surrounding air pollution. In addition, 
micromobility trips usually happen in heavy-traffic areas like city cen-
ters, which puts the riders at higher risks of air pollution exposure. 
Through over 2000 person-days of human subject monitoring, Dons 
et al. (2019) found participants were most likely to encounter peak 
exposure to air pollution while in transportation, which was especially 
evident when on bikes. It has been suggested that the health benefits 
from restricting active commuting like walking and cycling during high 
pollution days does not detract from physical activity in the long term 
(Giallouros et al., 2020). Unlike cycling, riding on a micromobility 
vehicle may not benefit the rider’s health due to limited demand of 

physical activities. At the same time, it is worth noting that people who 
engage in such active transport bear the disproportional burden of 
increasing exposure to air pollution, especially during high pollution 
days (Gelb & Apparicio, 2021). Because of the vast popularity of 
micromobility vehicles and their unique characteristics, understanding 
the impacts of air quality alerts on micromobility behaviors can help to 
evaluate the impacts of micromobility on public health and environ-
mental sustainability and inform better decision making for policy-
makers. Yet, studies on this relatively recently emerged transportation 
mode are limited. To address this research gap, the objective of this 
study is to assess the effectiveness of air quality alerts in influencing 
micromobility behavior. In doing so, this work explores implications for 
policymakers in information policy design by examining how the public 
responds to air quality information and how policies can be improved to 
better engage the public in behavioral changes. Overall, this study aims 
to answer the following research question: 

How do people change their micromobility usage behavior in 
response to air quality alerts? 

2. Methodology 

2.1. Data collection 

This study incorporated micromobility usage data, air quality data, 
and a series of other possible confounding parameters in the research 
setting of Austin, TX, to investigate behavioral responses on micro-
mobility vehicles to air quality alerts. The emergence of e-scooters and e- 
bikes offers an opportunity for researchers to investigate transportation 
behaviors through a rich collection of administrative data rather than 
self-reported data from surveys or interviews. Austin is one of the cities 
that mandates data disclosure from micromobility companies and ranks 
among the largest in terms of system size of shared micromobility in the 
U.S. In this study, micromobility data on shared dockless scooters and e- 
bikes was collected for analysis. 

The data was provided by the City of Austin Transportation 
Department through the official open data portal (City of Austin 
Transportation Department, 2020). This dataset contains information on 
each micromobility vehicle trip made within the Austin area since April 
2018 and is updated every day. Each record in the dataset includes the 
unique device ID, vehicle type (i.e., bicycle or scooter), trip duration, 
distance, start and end time, and start and end census tracts of each trip. 
Over 6.9 million trips on micromobility vehicles took place from April 
2018 through September 2019. To avoid the impacts of geofencing 
policies enacted in September 2019, which restrict the usage of micro-
mobility vehicles in certain areas of the city, the end date of our study 
period is set to September 2019. After obtaining the micromobility data, 
abnormal records, namely with trip duration time below 0 or above 24 
hours, or trip distance outside the range of 0.1 to 500 miles as suggested 
by Austin Transportation Department, were removed. Next, the data was 
aggregated on a daily basis by summing the trip counts made each day 
across the whole Austin area. Outliers of extreme daily trip counts, 
which were affected by large citywide events or festivals, were excluded 
from further study. 

Austin sends out an air quality alert when the predicted Ozone 
concentration on the next day exceeds the federal air quality standards, 
which is called an “Ozone Action Day” (OAD) in Austin. When an Ozone 
Action Day is issued, the government alerts citizens through mass media 
(e.g., email, news, and social media). Dates with an ozone alert were 
retrieved through the Austin municipal government website. To control 
for the possible confounding effects of actual air quality, monitored air 
quality data were obtained through the Air Quality Index (AQI) Daily 
Values Report from Environmental Protection Agency (U.S. Environ-
mental Protection Agency, 2020). Overall AQI is calculated based on the 
concentration of five major pollutants regulated by the Clean Air Act: 
ground-level ozone, particle pollution, carbon monoxide, sulfur dioxide, 
and nitrogen dioxide. In the U.S., AQI ranges from 0 to 500 and is 
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classified into six levels of health concerns, and each level is represented 
by a corresponding color with a goal to promote public awareness and 
comprehension. AQI categorization of health concerns and color-coding 
information (US Environmental Protection Agency, 2014) can be found 
inTable 1. Usually, when the AQI value is no more than 100, namely at 
Good or Moderate levels of health concerns, the air quality is regarded as 
satisfactory and the negative health impacts are deemed negligible. 

Meteorological parameters, which are likely to be confounding var-
iables because of their impact on both air quality and transportation 
behavior, were also collected during the same study period. Weather 
information was measured through a weather station at Austin- 
Bergstrom International Airport. Parameters including average tem-
perature, maximum wind speed, relative humidity, and precipitation 
were selected in this study. The weather information was collected from 
Weather Underground (Weather Underground, 2021). 

2.2. Statistical analysis 

To estimate the micromobility behavior responses to air quality 
alerts, daily micromobility counts were examined through a multivar-
iate Poisson regression. Since the goal of our study is to examine the 
effectiveness of air quality alerts, which is a form of information policy, 
we chose regression as our policy analysis method. The two main types 
of policy analysis methods are qualitative and quantitative. There are 
diverse methods in the quantitative field ranging from randomized 
controlled trials (RCT) and observational studies to regression models. 
Both RCT and observational studies require a counterfactual for causal 
inference through controlled experiment or quasi-experiment, which are 
usually expensive and time consuming. Regression is therefore a popular 
way in quantitative social science for policy analysis and has been 
widely adopted in previous studies (Saberian et al., 2017; Tribby et al., 
2013; Zhao et al., 2018). By controlling for the impacts of possible 
confounding factors, regression models are able to enhance the validity 
of the study compared to simple (non)parametric tests or two-variable 
correlation. Based on the types of data collected, different regression 
models can be applied. With individual-level data, Zhao et al. (2018) 
were able to use a logistic regression model to analyze the impacts of 
demographic characteristics on cycling behavioral changes during 
polluted days. Yet, survey data is prone to bias from memory recall er-
rors and social desirability, among other factors. In this study, we were 
able to collect population-level administrative data; thus, a multivariate 
regression is appropriate for the analysis with the capability of con-
trolling for possible confounding factors. The regression model can be 
expressed as: 

Log(micromobility behavior) = β0 + β1 × OAD + β2 × AQI + β3

× Day Type + β4 × interaction(AQI, OAD)

+
∑

i
βi × Meteorological parameter(i)

+ ϕt + ε
(1) 

Where 
β0 intercept, 
βi (i ∕= 0) estimates for each independent variable, 

OAD whether an alert is issued (1) or not (0), 
AQI actual air quality level, acceptable (0) or AQI value beyond 

100 (1), 
Day Type day of week and holidays 
Meteorological parameters temperature, precipitation, wind speed, 

relative humidity, 
ϕt time-fixed effects 
ε error term. 

The dependent variable is the micromobility behavior in Austin: 
daily trip counts on micromobility vehicles. The focus independent 
variable is a dummy variable representing whether an alert (OAD) is 
issued or not. The model controls for the effects of actual air quality 
(AQI), meteorological parameters and day type (which is categorized 
into: Monday to Thursday, Friday, Saturday, Sunday, and federal or 
state holiday). In addition, interaction between the air quality alert and 
actual air quality was considered by adding an interaction term in the 
model to examine if the impact of one variable would depend on the 
other variable. In our model, the interaction term is the product of the 
two variables. Micromobility vehicles are a relatively recently intro-
duced and increasingly popular mode of transportation in Austin. 
Therefore, the daily trip count increased substantially over much of the 
study period. A time parameter ϕt representing time-fixed effects was 
added into the regression model to account for this increase. A multi-
collinearity test was conducted using generalized variance inflation 
factor (GVIF) and the results are provided in the supplementary 
material. 

To investigate the sensitivity of different types of trips, trips were 
further categorized based on distance traveled into two classes: short- 
distance and long-distance. Daily trip counts of the two types were 
fitted into the same model. In this study, trips were sorted by distance 
ascendingly and those ranked in the top 80% were labeled as short- 
distance trips with the remaining 20% categorized as long-distance 
trips, since the distance distribution is close to a Poisson distribution 
with a long tail as can be seen in Fig. 1. The resulting cutoff threshold of 
1.5 miles was set in this manner since the information on the exact start 
and end point of each trip was not available and the trip purpose could 
not be inferred. 

3. Results 

3.1. Data Summary 

Micromobility data from the first three months beginning April 2018 
were removed due to existence of too many missing data points and a 
steep data ramping up period as micromobility systems were introduced 
to the area. Daily trip counts of micromobility vehicles over the 
remaining study period are plotted in Fig. 2, where the blue line in-
dicates the data trend by a local regression technique LOESS (i.e., locally 
estimated scatterplot smoothing). 

3.1.1. LOESS 
LOESS is a locally weighted regression method (Cleveland, 1979) 

used for data visualization of the micromobility usage trend in our study. 
LOESS combines the simplicity of linear least square regression with the 
flexibility of nonlinear models by fitting low-degree polynomial models 
on subsets of the data. The span of the subset is determined by the 
smoothing parameter α. The weight of each point is determined by how 
close it is to the focal point and the nearest points get more weight. After 
getting the regression values for each point, LOESS is complete. A gen-
eral upward trend over time for this new mode of transportation can be 
observed. 

Next, the spatial distribution of the micromobility trips is explored 
and plotted in supplementary material Fig A.1 Eqn (1), indicating the 
number of trips made within each census tract in Austin. As the figure 
shows, most of the trips occurred in the center area of Austin, especially 
in the single central census tract in downtown, where over 2 million trips 

Table 1 
Air Quality Index (AQI) values categorization and corresponding levels of health 
concerns and colors.  

Air Quality Index (AQI) values Levels of Health Concerns Colors 

0 to 50 Good Green 
51 to 100 Moderate Yellow 
101 to 150 Unhealthy for Sensitive Groups Orange 
151 to 200 Unhealthy Red 
201 to 300 Very Unhealthy Purple 
301 to 500 Hazardous Maroon  
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took place during the study period. 
During the study period, there were 10 days with unsatisfactory 

levels of actual air quality, namely an AQI index above 100, with major 
pollutants as either ozone or PM2.5. For the air quality alerts, there were 
10 Ozone Action Days issued, among which ozone concentrations of 
only three days on the days following the OAD alert day were beyond the 
federal limits, suggesting a prediction accuracy of around 30%. The 
distinction between actual air quality levels and predicted air quality 

levels and their varying impacts on micromobility usage behaviors is 
explored more in the following section. 

3.2. Analytical results 

Firstly, daily micromobility trip counts were fitted into the regres-
sion model shown in Eq. (1). Table 2 includes the results of the model. 
The “Variables” column represents the independent variables with the 

Fig. 1. Distribution of trip distance with a vertical dashed line representing the cutoff threshold at 1.5 miles.  

Fig. 2. Daily trip counts on micromobility vehicles over the study period with a local regression line indicating the data trend, and the grey band representing the 
95% confidence interval. 
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“Estimate” showing the estimated values of the regression coefficients 
associated with each independent variable. The other columns demon-
strate the standard errors and t values of each variable with the p values 
showing the probability of significance for the estimated value. The t 
statistic–or t value–measures the estimate of the regression coefficient β 
divided by its standard error. The larger the t value is, the more likely the 
estimate of the regression coefficient is different from 0. The probability 
of values larger than the calculated t value in a student’s t distribution is 
the p value to signify the significance of the estimates. Typically, a p 
value of less than 0.05 is accepted as statistically significant. 

As the results shown in Table 2 indicate, air quality alerts (OAD) did 
not show a significant impact on the micromobility trip counts. The 
average estimate on OAD was positive, suggesting that when an ozone 
alert was issued, the number of trips on micromobility vehicles 
increased on average. On the contrary, the actual air quality (AQI) had a 
significant effect. When the AQI elevated to an unsatisfactory level, the 
number of trips made on micromobility vehicles decreased. The inter-
action term did not show a significant effect on the micromobility trip 
counts, meaning that the impacts of actual air quality did not add to 
effects of the air quality alerts, or vice versa. The results further indicate 
that more trips were made on Fridays and Saturdays compared to other 
day types. From the estimated coefficients, except for Saturdays, the 
other day types show significantly smaller trip counts compared to the 
Friday baseline. Temperature, precipitation, and wind speed were all 
significant predictors of micromobility behavior. The time-fixed effects 
also showed a significantly positive estimate by the model, confirming 
the upward data trend. 

Impacts of air quality alerts on different types of micromobility trips 
were further examined. Since the accurate geographical information 
about the start and end points of each trip was not available, the trip 
purpose could not be inferred. Thus, types were determined based on 
trip length. In this study, all trips were sorted by length in ascending 
order. It was assumed that the top 80% trips were short length. The 
cutoff point was 1.5 miles, which is within the range of most frequent 
trip distances found in other areas (Lee et al., 2019; McKenzie, 2019). 
Responses of both types of trips were studied using the same regression 
model above. The results are listed in Table 3 showing the influence of 
air quality alerts on the two types of trips. As can be seen, only 
short-distance trips show a significant reduction in response to the 
actual air quality (AQI) while neither type of trip is responding to air 
quality alerts (i.e., OADs). 

In addition, a sensitivity analysis was implemented by varying the 

cutoff percentage threshold: 70 (short)/30 (long), 75/25, 85/15, 90/10, 
95/5. The p values for the estimates of long-distance trips can be seen in 
Fig. 3. The figure show that for long distance trips, when trip distance 
gets no less than 1.3 miles (i.e., 75% threshold), the trips become 
insensitive to AQI information. There is a drop in p value when the trip 
distance is longer than 3 miles (i.e., 95% cutoff), yet the p value still 
suggests non-significance. In this study, a deterministic threshold is not 
suggested since the value may be limited in generalizability. Yet, the 
sensitivity analysis does support that long distance trips are insensitive 
to AQI information while short distance trips are. 

4. Discussion 

Governments have been disclosing air quality information to the 
public to encourage behavioral changes with a goal to promote better 
public health and environmental sustainability. Due to the critical role 
our transportation behavior plays in determining personal exposure to 
air pollution, this study sought to examine and evaluate the effectiveness 
of air quality alerts in encouraging behavioral changes on an innovative 
transportation mode, micromobility. The results demonstrate that peo-
ple in Austin do not change their micromobility transportation usage 
behaviors in response to air quality alerts (OAD), echoing the driving 
miles results from Atlanta and Salt Lake City (Noonan, 2014; Tribby 
et al., 2013) and contradicting the daily cycling trip results from Sydney, 
Australia (Saberian et al., 2017). Conversely, daily micromobility trip 
counts did significantly decrease on polluted days when air quality 
thresholds were exceeded. The results partly agree with earlier research 
that people showed “averting” behaviors in response to poor air quality 
by staying indoors, rescheduling outdoor activities, or reducing the 
amount of strenuous outdoor activities in order to reduce their personal 
exposure to air pollution (Bäck et al., 2013; Bresnahan et al., 1997; 
Noonan, 2014). The findings are also in line with the results of Morton 
(2020) where cycling demand was significantly correlated with actual 
air quality. 

Shorter trips in our study were more sensitive to actual air quality 
(AQI) than longer trips. It may relate to the purposes of micromobility 
trips, which may be recreational in nature or complement other trans-
portation modes (e.g., taking an e-scooter to a mass transit station). 
Since the exact start and end point of each trip is unknown in our study, 
trip purpose remains obscure. Nevertheless, over 90% respondents in 
Austin indicated that they had used micromobility vehicles for recrea-
tional use and nearly 30% participants ranked recreational trips as their 
most frequent trip types (City of Austin, 2019). Thus, shorter trips may 
be more responsive to actual air quality since they are more likely to be 
recreational in nature and, therefore, more flexible. 

Though government agencies have been delivering air quality alerts 
at substantial cost for decades to the public to promote public health and 
environmental sustainability, the results of this study suggest that the 
impacts of air quality alerts (OAD) on micromobility trips are limited. 
There are several possible reasons for the ineffectiveness of this infor-
mation policy. Firstly, the Ozone Action Day is issued based on a pre-
diction of air quality on the following day, and the accuracy of such 
predictions is poor (Neidell, 2012; Saberian et al., 2017). In our study 
period, we estimated only a 30% accuracy. The public are not typically 
equipped with the capability of identifying the prediction errors, but 

Table 2 
Results of daily micromobility trip counts  

Variables Estimate Standard 
Error 

t value p value 

Ozone Action Day (OAD) 2.19E-02 1.25E-01 1.75E-01 8.61E-01 
AQI: Unhealthy for 

Sensitive Groups 
-3.96E- 
01 

1.25E-01 -3.15E+00 1.61E-03 
* 

Interaction(AQI, OAD) 1.93E-01 2.57E-01 7.50E-01 4.53E-01 
Day 

type 
Holiday -5.25E- 

01 
9.47E-02 -5.5E+00 3.00E-08 

* 
Mon. to 
Thurs. 

-2.79E- 
01 

4.74E-02 -5.89E+00 3.93E-09 
* 

Saturday 3.17E-02 6.10E-02 5.21E-01 6.03E-01 
Sunday -1.80E- 

01 
5.95E-02 -3.03E+00 2.44E-03 

* 
Average temperature -2.23E- 

03 
1.11E-03 -2.02E+00 4.38E-02 

* 
Average precipitation -2.36E- 

01 
4.03E-02 -5.86E+00 4.64E-09 

* 
Max wind speed -2.36E- 

01 
4.02E-02 -5.87E+00 4.41E-09 

* 
Max relative humidity 1.88E-03 1.72E-03 1.10E+00 2.73E-01 
Time-fixed effects 1.93E-03 1.27E-04 1.53E+01 < 2E-16 

*  

* denotes significance at the p<0.05 threshold 

Table 3 
Impacts of air quality information on short-distance and long-distance daily trip 
counts  

Trip Length Variables Estimate p value 

No. of short-distance 
trips 

Ozone Action Day (OAD) 1.39E-02 9.16E-01 
AQI: Unhealthy for Sensitive 
Groups 

-3.01E- 
01 

3.12E-02 
* 

No. of long-distance 
trips 

Ozone Action Day (OAD) 4.59E-02 7.47E-01 
AQI: Unhealthy for Sensitive 
Groups 

-2.13E- 
01 

1.60E-01  
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over time this may have damaged the public’s trust towards this infor-
mation. Another possible explanation is that even though the public is 
receiving alerts predicting ambient air quality, this information is not 
prioritized during their decision-making process. Instead, people may 
react to the actual air quality based on their perception of the ambient 
air quality at the time they are considering a micromobility trip. A 
caveat lies in the fact that judgements based on perceptions are often 
wrong or only correct on severely polluted days (Bäck et al., 2013; Kim 
et al., 2019; Schmitz et al., 2018). Lastly, the mixed messages commu-
nicated in an alert may hinder its effectiveness. In fact, the alerts not 
only deliver the health burdens of air pollution to the public but also call 
for voluntary actions to reduce emissions. Therefore, the air quality 
alerts try to convey the official information to dual audiences: the 
vulnerable groups who need to take actions to protect themselves and 
the general public who can help to alleviate the pollution (Petts, 2005). 
The two messages: staying indoors to protect yourself or utilizing more 
environmentally friendly transportation means, may be perceived as 
logically consistent, while the associated decision-making towards the 
two could be conflicting. For example, during moderately polluted days, 
vulnerable or sensitive groups are encouraged to adopt protective be-
haviors (e.g., not traveling) while the remaining groups are advised to 
use more sustainable transportation means when traveling. Such a 
conflicting situation might paralyze people’s decision-making capability 
and lead them to do nothing at all (Samuelson & Zeckhauser, 1988). As 
air quality can be viewed as a common good, asking for collective action 
may also encounter the common good dilemma where people may 
transfer the liability of air pollution to other institutions or government 
(Bickerstaff & Walker, 2002) or be incentivized to free ride on the sus-
tainability actions of others (Lubell et al., 2006). 

As we are all inundated by masses of information every day, we make 
decisions based on how we perceive and interpret the information. Air 
quality information in the form of alerts (e.g., OAD) has been dissemi-
nated to the public for many years by creating the link between people 
and their surrounding air quality to raise awareness, increase knowl-
edge, and ultimately persuade behavioral change. Nevertheless, even 
after years of joint efforts from federal and local governments, the results 
of this study are not promising. Despite the fact that riding on a 
micromobility vehicle imposes greater risks of air pollution exposure to 
the rider, it was found that people do not change their usage behaviors 
on micromobility vehicles in response to air quality alerts in Austin, TX. 
In contrast, it was found that the public does significantly change their 
usage behaviors in response to actual air quality (AQI), suggesting an 
opportunity for federal and local governments to disseminate real-time 
AQI-based information as an effective avenue towards changing peo-
ple’s transportation usage behaviors. With the multiple possible reasons 

for the inefficacy of air quality alerts, findings of this research could help 
with better decision making in designing information policies to facili-
tate public awareness and encourage behavioral changes. To achieve the 
goal of better public health and environmental sustainability, govern-
ment agencies should carefully consider the timing, accuracy, and 
message clarity when distributing air quality information to the public. 
Government should also consider the variability in perceptions of air 
quality among various groups to deliver tailored information in order to 
facilitate awareness and group-specific engagement of the public 
(Schmitz et al., 2018). Carefully designed tailored feedback has the 
potential to influence individual travel behavioral changes towards 
more pro-environmental and pro-healthy ones (Ahmed et al., 2020). 

5. Conclusion 

For many years, both the federal and local government agencies have 
been committed to air quality information disclosure to inform better 
decision-making for the general public. One critical perspective to 
evaluate the performance of such an information policy is behavioral 
changes, among which transportation usage behavior is of utmost 
importance. The relatively recently emerged transportation mode of 
micromobility puts riders at higher risks of exposure to ambient air 
pollution, for which studies are lacking. To address the gap in under-
standing, this study examined the effectiveness of air quality alerts in the 
form of Ozone Action Days in influencing micromobility usage behav-
iors in Austin, TX. The results of this study suggest that people do not 
change the usage of micromobility vehicles in response to air quality 
alerts, while usage does significantly decrease on days of unsatisfactory 
air quality levels. Micromobility trips of shorter distances are more 
sensitive to actual air quality level than longer distance trips. The results 
suggest air quality alert policies (i.e., Ozone Action Days) are not 
reducing exposure to ambient poor air quality in this mode of trans-
portation. As governments are trying to harness the power of informa-
tion to influence the public, it is important to evaluate how the public 
perceives, absorbs, and reacts to the information. Such information can 
empower people to change and determine the direction of the change, 
but may also end up creating unexpected or undesirable consequences. 
Real-time, unequivocal, accurate, and tailored information may be more 
effective at evoking the desired transportation behavioral changes 
enabling decision makers to design more effective air quality informa-
tion communication policies that promote better environmental sus-
tainability, public health and awareness of ambient air quality. 

This study faces several limitations which need to be addressed in 
future research. Firstly, the study period in this paper could be extended. 
Micromobility is a relatively new transportation mode to achieve 

Fig. 3. p values of AQI estimates corresponding to different cutoff percentages for estimates of long-distance trips.  
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widespread use. In our case, we stopped analysis of data when restric-
tion policies (e.g., geofencing) began to impact the usage of micro-
mobility vehicles. Further, behaviors towards this innovative 
transportation mode are subject to many variables, such as policy in-
terventions, making it difficult to capture the variation in micromobility 
data. Additionally, the social context may limit the generalizability of 
this study. People in different areas may use the micromobility vehicles 
for different purposes, and the structures of transportation systems over 
which micromobility vehicles travel may vary sharply. Thus, the 
behavioral responses may be disparate across different metropolitan 
areas. Future research needs to examine the external validity of the 
findings in this work by studying the transportation behavioral re-
sponses under different social and infrastructural contexts. Lastly, we 
used the daily trip counts as a proxy for micromobility usage behavior. 
Future research is needed to the role of demographics, to access exact 
start- and end-point data, and to collect individual-level trip data to 
deepen our understanding of micromobility transportation usage 
behavior. 
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