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Analytical fragility functions provide a way to quantify the risk of a structure. One method to construct
seismic fragility curves is to perform a series of nonlinear dynamic analyses of the structure. As structural
inspection data is increasing, updating fragility functions based on these measurements provides a way
to translate collected data into risk-based decision-making support. However, the high computational
cost in running and re-running analyses over the full finite-element model can be prohibitive. This paper
presents a new methodology based on conjugate Bayesian updating to efficiently and accurately update
analytical fragility curves. The reduction in computational cost from both reducing the number of anal-
yses required and simplifying the structural complexity are investigated. The method is applied to update
calculations of seismic bridge fragilities accounting for varying levels of measured corrosion. Results
comparing updated fragility curves obtained from using the proposed approach versus using the full
set of dynamic analyses show that the proposed method achieves accurate, stable, and more quickly con-
verging fragility calculations. The number of structural analyses required is reduced by at least 60%, and
the use of component-level analyses reduces computation time by 97% and more than an order of mag-
nitude compared to existing methods.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Fragility functions provide a way to quantify risk in structures
under varying loading intensities. Functions represent the condi-
tional probability of a structure exceeding a specific damage state
DS given a realization y of intensity measure IM as shown in Eq. (1).

Fragility ¼ Pr DSjIM ¼ y½ � ð1Þ

There are multiple methods of developing seismic fragility
curves, including expert-based, empirical, experimental, analytical,
and hybrid methods. The reader is referred to works such as Billah
and Alam [9] for the advantages and disadvantages of the varying
methods. This work focuses on analytical fragility curves as they
can be developed in the absence of adequate actual damage data
[9]. This includes developing fragilities over ranges of hazard inten-
sities through conducting a series of numerical analyses. Research-
ers have combined seismic intensity and performance-based
earthquake engineering concepts to create fragility curves to assess
seismic structural performance in particular. For seismic fragility,
variables in Eq. (1) become DS for damage state of the structural
component under the earthquake, IM intensity measure of the
ground motion, and y realization of ground motion intensity. Note
that fragility assessment under other hazard types (e.g., flood,
wind, etc.) is out of scope of this study. A review of fragility assess-
ment for other hazard types can be found in Argyoudis et al. [5].

Analytical fragility curves are obtained through running either
nonlinear time history analyses [14,46,48,50,64,65,65] or through
incremental dynamic analysis on nonlinear finite-element models
[36,58,38,62]. Fragility curves obtained from nonlinear time his-
tory analyses generate fragility assessments that are more reliable
[55]due to the ability to consider various sources of uncertainty in
the problem, including bridge geometries, material properties, and
soil properties, during the dynamic analysis. It is, therefore, the
method adopted in this paper.

However, there are several limitations in running nonlinear
time history analyses to obtain analytical fragility curves. These
relate to the high computational cost of the process, both in build-
ing the model and performing the analyses. The computational
cost arises from needing to perform a sufficient number of dynamic
analyses to obtain stable fragility assessments. The cost increases
even further if the dynamic analyses are performed for
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high-fidelity finite-element models with large numbers of degrees
of freedom and a high level of nonlinearity.

At the same time, structural inspection data is increasing, with
monitoring systems measuring structural states becoming more
widely used. The purpose of implementing structural inspection
and structural health monitoring systems is to facilitate decision-
making in the repair, rehabilitation, or replacement of structures.
However, to do this, one must translate collected inspection data
into decision-making support. One approach to effectively utilize
inspection data to support structural management decisions is to
update assessments of structural risk based on collected observa-
tions. Updating the fragility curves that quantify structural risk
based on the collected data traditionally requires running a signif-
icant set of nonlinear time history analyses to reach convergence.
These analyses must be re-run with each new collected observa-
tion. To investigate these converged results, there is still a debate
among researchers about how many ground motions should be
selected for generating reliable fragility curves [9]. As a result,
researchers have proposed multiple methods to achieve reliable
and converged estimates [7,34], where convergence indicates
decreased sensitivity of the results to the consideration of addi-
tional ground motions in the analysis. This paper presents an alter-
native method to efficiently and accurately obtain the converged
fragility estimate.

In addition, building the finite-element model itself, particu-
larly for large and complex structural systems, can be burdensome
due to complexities in structural geometries and boundary condi-
tions. The cost for running each analysis also increases as the size
and fidelity of the model increases. This paper proposes a method-
ology to address these limitations and provide a way to reduce the
computational costs to obtain and update analytical fragility
curves, e.g., based on collected inspection data and data from
reduced numerical analyses, to assess structural risk. As more data
is collected, the computational savings provided by the proposed
method to update structural risk assessments based on new infor-
mation enables newly collected data to be more efficiently and
effectively utilized.

Bayesian techniques have been utilized to develop fragility
curves in several previous studies. Singhal and Kiremidjian [56]
combine building damage data on reinforced concrete buildings
with fragility curves to arrive at more robust fragility assessments.
Der Kiureghian [18] uses Bayesian methods to assess the fragility
of electrical substation equipment based on field observations after
an earthquake. Gardoni et al. [24] develop a methodology to con-
struct probabilistic capacity models of structural components
through a Bayesian updating approach based on observational
data. Following that work, researchers have developed fragility
estimates for reinforced concrete columns and bridges with two-
column bents through a Bayesian methodology [12,63]. Koutsoure-
lakis [33] combines Bayesian methods with Markov Chain Monte
Carlo (MCMC) techniques to assess structural vulnerability using
fragility surfaces. Mitropoulou and Papadrakakis [43] use a neural
network to predict structural responses for fragility assessment in
a significantly reduced computational time compared to that
required by a conventional analysis. Li et al. (2013) [35] incorpo-
rate hybrid simulation with Bayesian updating techniques to
improve the accuracy of the fragility function. Baker [7] proposes
a framework for obtaining efficient analytical fragility functions
through multiple stripe analysis procedures. Thanapol et al. [57]
propose a procedure for updating the seismic reliability of existing
reinforced concrete structures in a marine environment by incor-
porating the spatial steel corrosion distribution. Noh et al. [47]
use conjugate Bayesian models to develop vulnerability functions
combined with mortality rate data for treating the uncertainties
in the earthquake. Kiani et al. [32] present a method for deriving
fragility curves based on machine learning models. Sainct et al.
2

[52] use active learning with support vector machine classifiers
to estimate fragility curves. However, previous proposed methods,
particularly those based on machine learning approaches, require
sufficient amounts of data to proceed, including extensive datasets
for training and testing, which is not required in the approach
described in this paper. In addition, among prior studies, none con-
sider the use of reduced models in the analyses, and none have
been found to investigate the use of Bayesian updating techniques
and conjugate Bayesian inference to reduce the computational cost
required to create and update analytical fragility curves with a
minimal number of structural analyses.

In the proposed method, updating rules from conjugate Baye-
sian inference are used to efficiently and accurately estimate fragi-
lity curves based on observational data with an analytically
tractable posterior distribution. This is done by directly updating
the fragility parameters with limited observational data rather
than conducting the full set of analyses as is typically required.
The observational data used in the proposed framework refers to
the combination of corrosion-level measurements or other inspec-
tion data (e.g., mass loss of the steel reinforcement due to corro-
sion) and reduced finite-element simulation results (e.g.,
displacement ductility from the column response). The method is
applied to assess the fragility of bridge structures in particular.
With the idea of facilitating efficient and accurate fragility curve
updating based on structural inspection data, the proposed method
is applied to update a bridge column’s fragility under varying levels
of measured corrosion. Corrosion is a common inspection parame-
ter of interest, particularly for reinforced concrete bridges [31]. The
corrosion-level measurements for the observational data are mea-
sured by mass loss as one of the most widely recognized measures
to explore and quantify the corrosion rate. The corrosion rate can
be measured by electrical equipment, which can then be converted
into a mass loss percentage using Faraday’s law of electrolysis
Broomfield, 2003; [27, 28]. The idea is to be able to generate and
update analytical fragility curves based on new inspection infor-
mation and a limited set of numerical data without needing to
re-run the full set of analyses. The proposed method is evaluated
both in terms of computational efficiency and accuracy of the
resulting calculated fragilities. The current work puts emphasis
on utilizing inspection data obtained from the field (e.g., mass loss
due to corrosion) and simplified numerical data from a reduced
finite-element model (e.g., displacement ductility from column
response analyses) to efficiently and accurately update the fragility
assessment. Results show two main advancements of the proposed
method: (1) reduction in the number of structural analyses
required to obtain stable fragility results, and (2) the ability to
use reduced component-level analyses to update estimates of full
structural performance.

The rest of the paper is organized as follows: the following two
sections provide the theoretical basis for the relationship between
fragility functions and the Bayesian updating approach in the
methodology. The derivation of the fragility parameter updating
rules using conjugate Bayesian inference is provided. The next sec-
tion defines the prior distribution and observational data used for
updating. Finally, to evaluate the proposed method’s performance,
the last two sections apply it to a full-bridge structure in the con-
text of updating fragilities accounting for measured corrosion in
the bridge column. First, observational data of the structural
response from running nonlinear time history analyses considering
the entire bridge based on a full structural finite-element model is
considered. Second, more limited observational data from analyses
of a reduced finite-element model of only a single column rather
than the full structure is considered. In both cases, the accuracy
of the resulting fragilities and the computational cost required to
construct the fragility curves are investigated for the proposed
approach compared to existing methods.
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2. Definition of fragility function

In Eq. (1), the fragility is expressed explicitly as the probability
of exceeding some damage state (DS) for a specific intensity mea-
sure (IM). The fragility function can also be expressed as the prob-
ability (Pr) of the demand, in this case seismic demand (Sd),
exceeding the structural capacity (Sc) at a given intensity measure
as shown in Eq. (2).

Fragility ¼ Pr Sd � ScjIM½ � ¼ Pr Sd
Sc
� 1jIM

h i
ð2Þ

When both the demand and capacity distributions follow log-
normal distributions, the fragility function has a closed-form solu-
tion. In this study, a classical lognormal fragility function is
adopted [55,23,45,29,35]; Ghosh and Jamie, 2010; Li et al., 2013).
While simulation-based approaches exist to assess seismic fragili-
ties, the focus here is on generating analytical fragility curves. The
probability of structural failure Pf indicating the probability of the
demand exceeding the capacity for a structural component is rep-
resented using parameters of the lognormal distributions of struc-
tural demand and capacity as shown in Eq. (3a). The reader is
referred to Hwang et al. [30] and Melchers [42] for more details
on the derivation of this solution. Alternatively, the fragility func-
tion can be expressed with respect to the ground motion intensity
(e.g., peak ground acceleration or spectral acceleration) shown in
Eq. (3b) [33].

Pf ¼ U
ln

Sd
Sc

� �ffiffiffiffiffiffiffiffiffi
n2dþn2c

p !
ð3aÞ
Pf ¼ F IM; k; nð Þ ¼ 1
2 þ 1

2 erf
ln IMð Þ�k

n
ffiffi
2

p
h i

ð3bÞ

U �ð Þ is the cumulative distribution function of the standard nor-
mal distribution; Sd and Sc are the median parameters of the
demand and capacity distributions, respectively; and nd and nc
are the lognormal standard deviation parameters of the demand
and capacity distributions, respectively. erf is an error function, n

is dispersion which is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2d þ n2c

q
, and k is the natural loga-

rithm of the median ground motion intensity corresponding to
unity of Sd

Sc
. In the context of estimating the median demand from

the probabilistic seismic demand models (PSDMs) using linear
regression, Eq. (4) shows the estimate of the median of the demand
distribution of the mth structural component by a power model
[16].

SD;m ¼ amIM
bm ð4aÞ
ln SD;mð Þ ¼ ln amð Þ þ bmln IMð Þ ð4bÞ
ln amð Þ and bm are the coefficients of the linear regression for the

mth component. Together with Eq. (4), the fragility function shown
in Eq. (3) can be expressed as shown in Eq. (5) [45].

Pf ¼ U ln IMð Þ�km
nm

� �
ð5aÞ
km ¼ ln Sc;mð Þ�ln amð Þ
bm

ð5bÞ
nm ¼
ffiffiffiffiffiffiffiffiffi
n2dþn2c

p
bm

ð5cÞ

km is the lognormal mean for the mth component and nm its dis-
persion value.
3

3. Derivation of updating rules using conjugate Bayesian
inference

The following equation gives a general framework of the Baye-
sian updating technique. It computes the posterior distribution of
parameters h given new information Xð Þ obtained from collected
experimental or numerical data [4].

f
0 0
hjXð Þ ¼ kL Xjhð Þf 0

hð Þ ð6Þ

k is a normalizing factor, L Xjhð Þ the likelihood function, f
0
hð Þ the

prior distribution of parameter vector h, and f
0 0
hjXð Þ the posterior

distribution of parameter vector h given new information. To
obtain an updated analytical fragility curve, the general idea is to
update the original curve with new information through the Baye-
sian inference shown above, and the proposed method takes
advantage of updating rules in conjugate Bayesian inference to
estimate fragility curves combined with observational data. Within
a Bayesian framework, both the original data and parameters that
describe the distribution of the original data are treated as random
variables. The original fragility data follows a lognormal distribu-
tion defined by its mean (k

0
m) and variance (n

02
m). It is assumed that

the mean (k
0
mÞ of the original fragility function is unknown, while

the variance (n
02
m) is known. This assumption holds within the study

context where the original fragility function is known, and the
objective is to efficiently update the estimated fragilities based
on new information.

The following is the derivation of the updating rules. Let Y rep-
resent the original lognormal fragility data. yj represent indepen-
dent sample points 1 � � �n from the original fragility curve as
shown in Eq. (7).

yj LN k
0
m; n

02
m

� �
; j ¼ 1 � � �n ð7aÞ

ln yj
� �

N k
0
m; n

02
m

� �
; j ¼ 1 � � �n ð7bÞ

From Eq. (2), the unknown parameter hð Þ is chosen to be the
unknown mean of the lognormal distribution (k

0
m). This is assumed

to follow a normal distribution (Li et al., 2013) [34]. Analyses per-
formed comparing results of the method using normal compared
with lognormal prior distributions can be found in the appendix
section. Other distributions may also be appropriate, but the per-
formance of various prior distributions is out of the scope of this
study, and can be considered for future work. The mean and stan-
dard deviation of the distribution are determined from the normal
prior distribution of k

0
m under a specified order of ground intensity

measures. This process is discussed in more detail in the following
section. Eq. (8) shows the normal prior distribution of the mean
(k

0
m).

k
0
m N l0

;r02
� � ð8Þ

l0 is the mean of the normal distribution of the parameter (k
0
m)

and r02 its variance. From Eq. (2), one can show that the posterior
distribution of the unknown parameter given observational data is
proportional to the product of the likelihood and prior distribution
as shown in Eq. (9).

f k
0
mjln y

^
� �� �

/ L ln y
^
� �

jk0
m

� �
f k

0
m

� �
ð9Þ

f k
0
mjln y

^
� �� �

is the posterior distribution for k
0
m conditioned on

observational data, f k
0
m

�
) is the prior distribution of k

0
m which is

assumed to be normally distributed, and L ln y
^
� �

jk0
m

� �
is the likeli-

hood function conditioned on n observational data points, which
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Fig. 1. Sequence of PGA values.
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can be represented by the product of probability density functions
(PDFs) of the lognormal distribution evaluated at each new obser-

vational data point. ln y
^
� �

is new information (e.g., displacement

ductility of the column under a particular corrosion level). Obser-
vational data (e.g., observed mean of displacement ductility under
a particular corrosion level) can then be computed by combining

the new information, ln y
^
� �

, and the regression analysis shown

in Eq. (5) and Eq. (6). Substituting the expression for the lognormal
PDF into Eq. (9) results in Eq. (10). Note that the distributions are
defined according to Bayesian probability theory and Bayesian
inference, such that the posterior distribution is of the same type
as the prior distribution and the prior is a conjugate prior for the
likelihood function.

f k
0
mjln y

^
� �� �

/ exp � 1
2

Pn

i¼1
ln y

^

ið Þ�k
0
mð Þ2

n
02
m

� �
exp � 1

2
k
0
m�l0ð Þ2
r02

� �
ð10Þ

Next, by introducing a new variable no, one can substitute n
02
m in

Eq. (10) with the expression in Eq. (11) to obtain the result in Eq.
(12).

r02 ¼ n
02
m
no

ð11Þ

f k
0
mjln y

^
� �� �

/ exp � 1
2

Pn

i¼1
ln v ið Þ�k

0
mð Þ2

n
02
m

� �
exp � 1

2
k
0
m�l0ð Þ2
n
02
m
no

 !
ð12Þ

no represents the effective number of observations in the prior
distribution [37]. Intuitively, no captures information about the
standard deviation of the prior distribution, as the magnitude of
no is inversely proportional to the prior standard deviation. The
expression on the right-hand side of Eq. (12) can be further simpli-
fied to Eq. (13) by expanding terms and ignoring terms that do not

depend on ln k
0
m

� �
.

f k
0
mjln y

^
� �� �

/ exp � 1
2n

02
m

nþno

k
0
m � n ln y

^ð Þ
�

þnol
0

nþno

 !2!0@ ð13Þ

ln y
^
� ��

is the mean value of ln y
^

i

� �
. The resulting updating rules

for the parameters of the posterior distribution are as shown in Eq.
(14).

l0 0 ¼ n ln y
^ð Þ

�
þnol

0

nþno
ð14aÞ

r0 02 ¼ n
02
m

nþno
ð14bÞ

l0 0 and r0 02 represent the mean and variance of the posterior dis-
tribution, respectively. Finally, the posterior-predictive distribu-

tion data (bY ) can be computed based on Eq. (15) assuming future

data (bY ) is conditionally independent given k
0
m.

f ln by� �j ln y
^
� �� �

¼ R f ln by� �; k0
mj ln y

^
� �� �

dk
0
m ð15aÞ

f ln by� �j ln y
^
� �� �

¼ R f ln by� �jk0
m

� �
� f k

0
mj ln y

^
� �� �

dk
0
m ð15bÞ

With the recognition of the first and second terms on the right-
hand side of Eq. (15b) to be the likelihood estimator and posterior
distribution, respectively, further simplification of Eq. (15) leads to
the sum of the two independent normal distributions as shown in
Eq. (16) and parameters of the predictive-posterior distribution in
Eq. (17).

f ln by� �j ln y
^
� �� �

¼ Nðl0 0
; n

02
m þ r0 02Þ ð16Þ
4

k
0 0
m ¼ l0 0 ð17aÞ
n
0 02
m ¼ n

02
m þ r0 02 ð17bÞ

In Eq. (17), k
0 0
m and n

0 02
m represent the mean and variance of the

posterior-predictive distribution, respectively. In other words,
these also refer to the mean and variance of the updated fragility
function for the mth component. Note the current study assumes
known variance and uses deterministic values assigned for the
variance of the lognormal distribution to incorporate the conjugate
Bayesian updating framework. The consideration of an additional
distribution for the variance requires numerical techniques to
solve for the desired variables, e.g., MCMC, which could decrease
the efficiency of the proposed framework. The use of a known vari-
ance not only accelerates the Bayesian framework with minimal
computational efforts but is also shown to provide accurate
estimations.
4. Determination of parameters of prior distribution and
observational data for Bayesian updating

Determining the parameters of the distribution of k
0
m requires a

series of k
0
m sample points based on specified orders of the loading

intensity measure, e.g., peak ground acceleration (PGA) for ground
motion intensity in the assessment of seismic fragility. In the con-
text of the probabilistic seismic demand model (PSDM), each new
k
0
m is generated according to Eq. (4a) and Eq. (4b) by adding one
numerical data point of displacement ductility at a time for the lin-
ear regression analysis. In general for PSDM, the ground motion
intensity measures are generated randomly. This renders results
with high randomness and influences the accuracy of the results.
For example, if PGA values are ordered by increasing PGA, it over-
estimates the fragility; if data points are ordered by decreasing
PGA, it underestimates the fragility. Therefore, in this study, the
ground intensity measures are ordered such that the numerical
data points start at the mean PGA value and oscillate around the
mean with increasing deviation from the mean. This decreases
the randomness in the outcome and results in a more robust
method. While not all prior studies of fragility functions use
ordered ground motions, for consistency in comparison in this
study’s results, the ordered ground motion approach is used in
both the proposed and existing methods. Fig. 1 shows the PGA val-
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ues for a set of 160 ground motions that have been sequenced such
that they follow the aforementioned order. Note that PGA is
selected as the intensity measure (IM) over others due to its sim-
plicity, ease of identification, and widespread use as an IM in seis-
mic risk assessment [14]; Nielson and DesRoches, 2007 [46]; [29].
However, the proposed framework can also be incorporated with
other IMs, such as the spectral acceleration at the first period
Sa T1ð Þ. The accuracy and efficiency of using other IMs with the pro-
posed framework would still hold compared to the existing
approach.

The method of obtaining the series of k
0
m points for both the

prior distribution and the observational data for Bayesian updating
is the same. Once the prior distribution of k

0
m is specified, the mean

and standard deviation of the prior distribution can be determined.
Similarly, once assembly of the observational data is generated

from the new information ln y
^
� �

, the updating rules as derived in

the previous section can be applied to obtain the posterior distri-
bution of k

0
m.

The final step is to calculate the total sample variance (rt) of the
predictive mean (k

0 0
m) of the fragility function by combining the

posterior-predictive variance and the standard deviation of the
mean of observational data used for Bayesian updating by the
square root of the sum of the squares (SRSS). The upper and lower
bounds of the predictive mean (k

0 0
m) are then computed accordingly.

Rather than rendering a single value, the lower bound and upper
bound of the posterior-predictive mean provide a range of possible
values and corresponding confidence in the results. The bounds
can be interpreted as capturing the epistemic uncertainty, with
the confidence bounds becoming narrower as the number of obser-
vational data points increases.

The overall method is as shown in Fig. 2 and proceeds as fol-
lows: The first step is to obtain the original lognormal distribution
with mean and variance k

0
m and n

02
m , respectively, for the

mth m ¼ 1;2;3; � � � ;nð Þ component, where n is the total number of
critical components of the structure. The mean of the original log-
Fig. 2. Flowchart of the procedures to obtain the fin

5

normal distribution is assumed to follow a normal distribution
with the mean and standard deviation of k

0
m computed based on

the prior distribution as described in the previous section. Once
the prior distribution is found, the updating rules (Eq. (14a) and
(14b)) for normal conjugate pairs are applied to compute the pos-
terior parameters. Parameters of the posterior-predictive distribu-
tion are then computed by summing the two independent normal
distributions as shown from Eq. (15) to Eq. (17). The final confi-
dence bounds on the result are then computed by SRSS. The same
procedures are applied to the next structural component until it
enumerates all the possible components in the structure. Note that
the current study focuses on the bridge column response with the
values of m and n set to be 1. The flowchart shown in Fig. 2 sum-
marizes the procedures to obtain the final parameters for the
updated fragility function.
5. Detailed Description of bridges with corrosion inspection
data

To demonstrate and evaluate the proposed method to effi-
ciently update fragility curves, it is applied to a sample bridge
structure where the objective is to update the component fragility
of the bridge column given observational data considering corro-
sion’s effect.
5.1. Effect of corrosion

Multiple studies have shown the significant influence on steel’s
mechanical properties due to the effect of pitting corrosion
[1,21,20,3]. In particular, Du et al. [21,20] have investigated the
effects of pitting corrosion on steel bars’ ductility and residual
capacity. Kashani et al. [25] use 3D optical measurements of cor-
roded bars to evaluate the spatial variability in corrosion patterns,
and they have shown that the geometrical properties of corroded
bars can be treated as a lognormal distribution. Meanwhile, several
researchers [26,28,64] have adopted the aforementioned findings
al parameters of the updated fragility function.
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to account for the influence of pitting corrosion on the geometric
properties of corroded steel bars with the mean values of a lognor-
mal distribution. In this study, the main effect of corrosion on lon-
gitudinal reinforcement is captured by modifying the geometric
and constitutive behavior of the longitudinal reinforcement, which
accounts for inelastic buckling and ductility loss [26]. The corro-
sion effect on reinforcement in reinforced concrete bridge struc-
tures is represented by applying the average reductions in
diameter of reinforcement and yield strength as shown in Eq.
(18) and (19), respectively.

db cor ¼ db
10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� w

p ð18Þ
f y cor ¼ f y 1� bwð Þ ð19Þ
db cor and db are the corroded and pristine diameter of longitu-

dinal bars, respectively; f y cor and f y are corroded and pristine yield
strength of steel bar, respectively; w=100 is mass loss ratio measur-
ing the level of corrosion; b is pitting coefficient. Meanwhile, the
influence of corrosion on concrete cracking is modeled based on
modified compression field theory [59], as shown in Eq. (20).

f cr ¼ f c
1þK

e1
eco

ð20Þ

f cr and f c are reduced concrete strength due to cracking and
pristine compressive concrete strength, respectively; K is coeffi-
cient related to bar roughness and diameter with a value of 0.1
[10]; and eco and e1 are the strains of the peak concrete compres-
sive strength and smeared tensile strain in the cracked concrete
with right angles to the direction of the compression, respectively.
There is a reduction of strength and stiffness of the concrete consti-
tutive behavior in compression due to transverse tensile strain.
This theory has been applied to corroded reinforced concrete
beams to capture the effect of cracked concrete cover [17]. Con-
crete cracking and spalling in compression can be described by
reduced strength in the concrete constitutive behavior described
in Eq. (20). The average tensile strain in Eq. (20) is contingent on
the magnitude of the total crack width. Eq. (21) proposed by
Molina et al. [44] gives a relation between total crack width (wcr)
and depth of the corrosion attack (X), assuming all corrosion prod-
ucts accumulate around the reinforcement.

wcr ¼ 2p v rs � 1ð ÞX ð21Þ
vrs is the ratio of volumetric expansion of the oxides with

respect to the virgin material. The depth of the corrosion attack
can then relate to corrosion quantification (i.e., mass loss), which
is discussed in detail by Shang et al. [54]. While the corrosion does
affect the bond strength of the corroded vertical reinforcement,
previous studies (Ou et al., 2012; [60,61,2,28] have found that
the reduced bond strength does not govern the failure of the cor-
roded column based on observed experimental results. Instead,
the failure of columns under cyclic loading is mainly governed by
other failure modes, such as fracture of bars in tension, buckling
of bars, etc. For the behavior of core concrete considering the effect
of corrosion, there is still no clear evidence to quantify the impact
of corrosion. However, previous studies account for the effect of
corrosion on the constitutive behavior of core concrete by consid-
ering premature fracture of transverse reinforcement due to corro-
sion (Kashani et al., 2016) [28], which leads to the crushing of
confined concrete due to the first fracture of the spiral [68]. This
behavior is included in this study.

Combining all effects, Fig. 3 shows the material stress–strain
behavior of the (a) core concrete, (b) cover concrete, and steel
bar in (c) tension, and (d) compression of a circular reinforced con-
crete column considering the effect of corrosion. Behavior under
varying degrees of corrosion are shown. Corrosion is indicated by
6

percent mass loss of both transverse and longitudinal steel rein-
forcement, and different degrees of cracking are described.

5.2. Description of sample bridge

The sample bridge is a typical multi-continuous concrete box
girder bridge [50], with longitudinal and transverse views shown
in Fig. 4. In addition to ground motion uncertainties, this study
has accounted for the uncertainties in the selected bridge’s geo-
metric and material properties [50,64]. Table 1a summarizes the
mean and variance values of the geometric parameters with log-
normal distributions as indicated in Fig. 3 based on an extensive
review of bridge plans. Table 1b summarizes the distributions of
key mechanical and material properties of the bridge. The sample
bridge consists of two spans and a single column bent with an inte-
gral type connection. The bridge employs a circular column sup-
ported on a pile cap with a group of piles underneath it. The
column consists of #11 longitudinal rebars and #4 stirrups with
75 mm spacing on center. The bridge girders are cast-in-place pre-
stressed concrete boxes with 0.04 for depth-to-span ratios. The
bridge deck is seated on the elastomeric bearing pad at the abut-
ments consisted of a 1.8 m tall backwall and Class 70 piles with
a spacing of 2 m on center. Note the selection of this simpler bridge
type is to illustrate the implementation of the proposed methodol-
ogy, and the proposed methodology can also apply to more com-
plex structures consisting of up to n critical structural components.

The 3-D numerical model of the bridge is built in the finite-
element software OpenSees (McKenna, 1997) [69]. The models
are developed by sampling across the parameters listed in Table 1
through the method of Latin Hypercube Sampling (LHS) [40]. The
uncertainty in material parameters listed in Table 1b is summa-
rized by Ramanathan [50]. For example, the compressive strength
of the concrete follows the recommendations of Choi [13], which is
modeled using a normal distribution. The yield strength of rein-
forcement follows a lognormal distribution recommended by
Ellingwood and Hwang [22].

For modeling the bridge column, a single column with two
force-based beam-column elements connected in series is used
in this study, as shown in Fig. 5. The column is assumed to have
double curvature with an inflection point at the middle node
[64], and strain penetration effects [67] have also been considered.
Each force-based beam-column element consists of three integra-
tion points with fiber discretization to capture the flexural
response. With this number of integration points, there are mini-
mal issues with strain localization in relation to the structural
response. However, if desired, an alternative way to tackle strain
localization is through implementing regularization approaches
[15,65,65]. For uniaxial material models, the ‘Concrete020 material
model is used for the behavior of the concrete, and the confine-
ment effect in the column is captured through treatment of the
stress–strain behavior of the uniaxial fiber in the confined region
[39]. The ‘Steel010 material with a uniaxial bilinear steel model is
used to capture the hardening effect in the reinforcement.

The foundation consists of calibrated rotational and transla-
tional springs. For the superstructure, the bridge deck is modeled
using equivalent elastic beam-column elements under the
assumption that the bridge deck remains linearly elastic during
seismic events. Shear keys are located at the abutments. They are
modeled using zero-length elements with a maximum displace-
ment of 3.5 in [41]before the corresponding shear capacity reduces
to zero to capture the nonlinear backbone response. Based on pre-
1971 design criteria in California for which this bridge type is com-
mon [50], the seat-type abutment is used in the bridge model. The
longitudinal response of the abutment includes two types of resis-
tance, passive and active. Passive resistance considers resistance
contributed by the soil backfill and abutment pile, whereas active
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Fig. 3. Material stress–strain behavior with effect of corrosion and cracking for (a) core concrete, (b) cover concrete, (c) steel in tension and (d) steel in compression with bar
buckling.

Fig. 4. (a) Longitudinal view and (b) transverse view of sample bridge.
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resistance considers the resistance contributed by the piles alone.
This study uses ‘HyperbolicGapMaterial’ in OpenSees to simulate
the backfill response, and the backfill model is based on the work
7

proposed by Shamsabadi and Yan [53]. The abutment pile provides
both transverse and longitudinal resistance at the abutment. This
study uses the ‘Hysteretic’ material with a zero-length spring to



Table 1b
Distribution details for mechanical and material parameters of the sample bridges.

Mechanical Parameters Distribution
Type

Distribution
Parameter 1

Distribution
Parameter 2

Concrete compressive
strength

Normal 34.5 MPa
(mean)

4.3 MPa
(standard
deviation)

Yield strength of steel Lognormal 460 MPa
(mean)

0.08
(coefficient of
variation)

Shear modulus of
elastomeric bearing pad

Uniform 551.6 MPa
(lower
bound)

1723.7 MPa
(upper bound)

Longitudinal reinforced
ratio of column

Uniform 1.0 %
(lower
bound)

3.5 %
(upper bound)

Transverse reinforced ratio
of column

Uniform 0.4 %
(lower
bound)

1.7 %
(upper bound)

Damping ratio Normal 0.045
(mean)

0.0125
(standard
deviation)

Table 2
Description of damage states.

Flexure-Critical Column Description Damage Level

DS-1 Significant Cracking Slight
DS-2 Initial Spalling Moderate
DS-3 Core Exposure Extensive
DS-4 20% Strength Degradation Complete

Table 1a
Mean and variance values of geometric parameters of the sample bridges.

Geometric Parameters Distribution Type Mean Variance

Span length (L) Lognormal 32.3 m 77.9 m2

Deck width (Dw) Lognormal 10.4 m 2.8 m2

Column height (H) Lognormal 6.5 m 0.60 m2

Depth of bridge deck (h) Lognormal 1.8 m 0.24 m2
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model the pile response based on the trilinear model recom-
mended by Choi [13]. Following the recommendations by Nielson
[45], Padgett [48], and Ramanathan [50], the damping is modeled
assuming a normal distribution. Moreover, the study uses 0.02
and 0.07 for the 2nd and 98th percentile of the bridge damping
ratio, respectively [8], resulting in a normal distribution with a
mean of 0.045 and a standard deviation of 0.0125 that is adopted
herein. For the highway bridges’ fragility assessment, the study
mainly focuses on the damage that occurs in the bridge column
Fig. 5. Numerical model

8

with displacement ductility as the engineering demand parameter.
The damage states used to quantify the levels of the damage are
shown in Table 2 with flexural dominant failure mode. A suite of
ground motions is selected from the NGA-2 database [11], consist-
ing of 160 motions matching California’s hazard characteristics for
which this bridge type is common. Fig. 6 shows the response spec-
tra of the ground motions in the two horizontal directions.

6. Results

This work aims to update the original fragility curve with new
observational data to obtain the new fragility function with
reduced computational cost. Therefore, it is assumed that the orig-
inal fragility function is known from prior analyses. The original
fragility curve need not be obtained from running nonlinear time
history analyses on a full structural finite-element model, but it
can also be from the literature, expertise, or empirical data. The
updating is done by taking limited observational data to calculate
fragilities using the derived Bayesian updating rules, rather than
running the full set of nonlinear time history analyses with a suf-
ficient number of groundmotions to obtain stable fragility function
parameters.

In this case, new data is taken as observations of the response
under corrosion conditions in the column. Therefore, the original
fragility function refers to the fragility curve with a pristine bridge
column, and the updated fragility function provides the fragility
with a corroded bridge column. The following section presents
results from using two types of numerical data to update the fragi-
lity function. The first type of data refers to the bridge column’s
displacement ductility under seismic loadings from analyzing the
full-bridge response, i.e., using the full structural finite-element
for bridge column.



Fig. 6. Response spectra for the selected ground motions in (a) horizontal component one and (b) horizontal component two.

Fig. 7. (a) Prior distribution compared to posterior distribution for k
0
m and (b) original fragility curve (pristine column) for collapse damage state compared to updated

fragility curve (corrosion with 20% mass loss of reinforcement) using 25 observational data points.
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model; the second type of data refers to the displacement ductility
of the bridge column under seismic loadings considering the single
column only. The resulting performance of the proposed approach
in terms of accuracy and computational cost are compared with
existing methods for both types of observational information.

6.1. Bayesian updating of fragility curves considering full bridge model

The results in this section use observational data computed
from the bridge column’s displacement ductility based on nonlin-
ear time history analyses considering the response of the entire
bridge under a particular corrosion level. As is typical for fragility
assessments, the full structural finite-element model is required.
However, the number of dynamic analyses required using the pro-
posed method compared to the existing method to obtain stable
fragility results differs. To show the impact of corrosion on struc-
tural performance, Fig. 7(a) shows the prior and posterior distribu-
9

tions of the unknown parameter k
0
m with 25 observational data

points. Fig. 7(b) shows the original and updated fragility curves
for the collapse damage state using these 25 observational data
points. The original fragility curve represents fragility for the pris-
tine bridge column; the updated fragility curve represents fragility
with a corroded column with a 20% mass loss of reinforcement.
Mass loss of reinforcement is used as a measure of corrosion as a
readily obtainable structural inspection parameter [31].

To assess the proposed approach’s accuracy, Fig. 8 shows the
fragility results across the four damage states from using the pro-
posed approach compared with the exact result. The exact result is
taken as the fragility function generated by running nonlinear time
history analyses over the full set of 160 ground motions. The
updated fragility curves for each damage state are shown, includ-
ing 95% confidence bounds from the proposed approach computed
using 25 and 50 observational data points, compared to the exact
fragility curve.
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Fig. 8. Bayesian updated fragility curve compared to exact fragility curve considering 25 observational data points (left) and 50 observational data points (right) for (a) & (b)
DS-1, (c) & (d) DS-2, (e) & (f) DS-3, and (g) & (h) DS-4.
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In Fig. 8, the narrowing of the confidence bounds in using 50
compared to 25 observational data points is observed. As expected,
more accurate results using the Bayesian updating approach are
obtained as the number of observational data points increases.
The maximum failure probability differences between the results
from the Bayesian updating approach using 25 and 50 observa-
tional data points and the exact result are 16% and 2% for DS-1,
9% and 2% for DS-2, 12% and 8% for DS-3, and 9% and 4% for DS-
4, respectively. The exact result lies within the 95% confidence
bounds in both cases and for all damage states.

To further quantify the proposed method’s performance and
assess differences in achieving convergence between the proposed
and existing approaches, a comparison of the performance as the
number of observations increases is also investigated. Fig. 9(a)
and 9(c) show the evolution of the lognormal mean and variance
as the number of observations increases for both approaches. Note
that the existing approach employs the standard method of
moments to estimate the fragility parameters, and the ordered
set of ground motions is used to limit the influence of randomness
in loading intensities on the variability of the results for the exist-
10
ing method. Fig. 9(b) and (d) show the error of the lognormal mean
and variance from the exact value as the number of observations
increases for the two approaches.

Fig. 9 shows that the lognormal mean converges faster and
more smoothly using the proposed Bayesian updating method
compared with the existing approach. In the existing approach,
the parameters for the fragility function are generated based on
PSDMs. The Bayesian updating approach evaluates the lognormal
parameters by updating rules and calculating the mean as in Eq.
(14a), resulting in smoother estimates of the parameters. The
smoothness in the convergence of parameters is even more appar-
ent in the convergence of the variance. The maximum error of the
lognormal mean is 50% for the proposed compared with 260% for
the existing approach, while the maximum error of the variance
is 21% for the proposed compared with 490% for the existing
approach. The sudden increases in error that occur for both the log-
normal mean and variance in Fig. 9, particularly for the existing
method, are due to the consideration of outliers from the numeri-
cal results. This outcome shows the instability of the existing
approach in the presence of outliers. In contrast, the proposed
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Fig. 8 (continued)
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approach provides more reliable results, predicting the variable
values in a more stable and consistent manner.

Fig. 10 investigates the accuracy of the two approaches, show-
ing the errors in terms of the root mean square error (RMSE) for
the fragility curves over the full range of PGA values, as well as
the maximum differences in probabilities of exceeding each dam-
age state for the proposed compared to existing approaches. The
study utilizes the results from running analyses over the full set
of 160 ground motions as the benchmark results for comparison.
The percentage errors obtained from both the proposed and exist-
ing approaches are calculated in comparison with the benchmark
points as a function of the number of observational data. Fig. 10
shows RMSE and the maximum difference in failure probability
for probabilities of exceeding damage states DS-1 through DS-4.
The plots for the existing approach begin at seven data points
because the first six data points generate a negative slope in the
PSDM (i.e., a negative bm value in Eq. (5b)), which consequently
leads to a negative lognormal variance from Eq. (6c).
11
From Fig. 10, the proposed Bayesian updating approach leads to
a smoother result with faster convergence and lower error com-
pared to the existing approach. In all cases, the proposed approach
converges to a lower RMSE and lower maximum probability differ-
ence than existing methods, indicating increased accuracy of the
proposed approach. To facilitate comparison between the two
approaches, a threshold of 6% and 10% are chosen for RMSE and
maximum probability difference, respectively, based on the con-
vergence values of the results. The proposed approach achieves
faster convergence to these accuracy threshold values and more
stable results. For example, looking at the most extreme damage
state DS-4, the proposed approach requires only 25 observational
data points to reduce RMSE and the maximum difference in failure
probability to below 6% and 10%, respectively. In addition, once a
minimal RMSE and maximum probability difference level is
achieved, the outcome remains stable using the proposed
approach. In comparison, it requires more than 50 observational
data points for existing methods to reach the minimum RMSE



Fig. 9. (a) Evolution and (b) error of lognormal mean, and (c) evolution and (d) error of variance between the exact value and results from the proposed and existing
approaches for DS-4 under 20% mass loss.

Y. Zhang and I. Tien Computers and Structures 270 (2022) 106832
and probability difference thresholds. The instability of results
using the existing approach is also seen as the RMSE, and probabil-
ity difference values are observed to increase. These trends in
terms of accuracy, convergence, and stability are observed for the
other damage states as well.

The proposed approach gives a relatively better prediction for
DS-1 and DS-2 compared with DS-3 and DS-4, particularly when
50 observational data points are used as shown in Fig. 8, because
the lower damage state datasets exhibit less variability than the
higher damage datasets. However, from the results in Fig. 10, it
is shown that the proposed approach not only renders smaller val-
ues in terms of RMSE and maximum difference with fewer num-
bers observed data required than that for the existing approach
for DS-1 to DS-4, but it also gives a more stable prediction once a
specific number of observed data is provided in comparison with
the existing approach. Table 3 summarizes the number of analyses
required to reduce RMSE and maximum difference to below the 6%
and 10% thresholds, respectively, as well as the minimum RMSE
and probability difference achieved for each damage state.
12
From Table 3, for all damage states, existing approaches require
an average of 64 and 79 analyses for the RMSE and maximum
probability difference to reduce below 6% and 10%, respectively.
Comparatively, it takes an average of 25 analyses for the proposed
approach to do so. The average computational time saved to obtain
updated fragility functions for each damage state is more than 60%,
with a savings of 61% to achieve RMSE under 6% and a savings of
68% to achieve a maximum probability difference under 10%. To
evaluate the accuracy of the approaches, the minimum RMSE and
minimum probability difference achieved are compared. As exist-
ing methods show unstable results, the minimum error values
achieved over 50 observational data points for both approaches
are shown to facilitate consistency in the comparison. The pro-
posed approach achieves more accurate results (lower RMSE and
lower probability difference) across all damage states, except for
DS-3 which the values are close. The results show that the pro-
posed approach is able to achieve accurate and stable updated fra-
gility assessments with fewer data points and significantly reduced
computational cost compared to existing methods.



Fig. 10. RMSE and maximum difference of failure probability for (a) & (b) DS-1, (c) & (d) DS-2, (e) & (f) DS-3, and (g) & (h) DS-4 for the proposed compared to existing
approaches considering full bridge response.
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6.2. Bayesian updating of fragility curves considering single column
only

Results in the previous section show the reduction in the num-
ber of analyses possible using the proposed method. However, a
full structural finite-element model is required. This section inves-
tigates the further reduction of computational cost by using infor-
mation from a reduced complexity finite-element model. Instead
of performing nonlinear time history analyses at the full-bridge
level, this section considers data from nonlinear time history anal-
yses performed on the column level only with the same set of
ground motions that was used for the full bridge response. The
bridge column is modeled based on Fig. 5 for this component-
level study, and the same amount of axial load from the super-
structure is imposed at the top of the column. The bond-slip effect
has been considered by applying a zero-length bond-slip element
at the end of the beam-column model. More details can be found
in the prior section describing the bridge modeling. The goal here
is to investigate the ability to use component-level analyses to
update estimates of full structural performance. If possible, the
time to obtain the updated fragility functions can be further
13
reduced by decreasing the degrees of freedom and complexity of
the structural model and analyses. The reduced component-level
models can be applied to the critical structural component with
maximum damage accumulation, and this requires either engi-
neering judgment or understanding of the structural response at
the system level. Another way to figure out the critical location is
to conduct a static/dynamic analysis to identify the component
with the dominating structural response as such components will
typically govern the structural response under a particular loading
situation, and would thus be selected for the reduced component-
level modeling.

For the case of the bridge structure, the column behavior often
dictates the bridge behavior. Therefore, the reduced finite-element
model is taken to be a single column only. The following results
show the use of the proposed Bayesian updating approach per-
formed based on the outcomes of nonlinear analyses of the single
column to obtain updated fragility curves considering the effect of
measured corrosion.

As structural analyses of the column only are significantly less
computationally intensive compared to the full-bridge structure,
51 nonlinear time history analyses are performed on the bridge



Fig. 10 (continued)

Table 3
Comparison of computational cost and accuracy between the proposed (full-bridge response) and existing approaches.

Num. of Analyses Required RMSE � 6% Max. Prob. Diff. (�10%) Min. RMSE (%) with 50
Observed Data

Min. Max. Prob. Diff. (%)
with 50 Observed Data

Proposed Existing Proposed Existing Proposed Existing Proposed Existing

DS-1 26 61 26 80 0.87 3.20 2.12 6.51
DS-2 25 65 25 79 0.50 3.96 1.11 6.71
DS-3 26 65 26 79 4.07 4.02 7.29 6.77
DS-4 25 65 23 79 2.78 4.07 3.74 6.85
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column, which are transformed to 50 observational data points.
The computational requirements for conducting these analyses
are provided at the end of this section. The procedures shown in
Fig. 2 are then applied to the single-column responses to obtain
updated fragility curves of a corroded bridge column. It is noted
that the prior distribution for this data type is also computed based
on single-column analyses rather than the full-bridge response. To
show how the proposed method performs as the expected perfor-
mance of the structure varies, e.g., with varying levels of corrosion,
Fig. 11 shows the resulting fragility curves considering 10% mass
loss of reinforcement (left-hand plots) and 20% mass loss (right-
14
hand plots) for each of the four damage states. The results from
the proposed method, including 99% confidence bounds, are shown
compared to the exact value obtained from running the full set of
160 nonlinear time history analyses on the full bridge finite-
element model.

From Fig. 11, the Bayesian updating approach is able to predict
the fragility parameters and accurately update the fragility func-
tions based on the limited data obtained from the reduced finite-
element model of the displacement ductility between the pristine
and corroded column. The exact value lies within the 99% confi-
dence bounds in all cases except for DS-4 at low PGA values. In



Fig. 11. Bayesian updated fragility curve compared to exact fragility curve considering 10% mass loss of reinforcement (left) and 20% mass loss (right) for (a) & (b) DS-1, (c) &
(d) DS-2, (e) & (f) DS-3, and (g) & (h) DS-4.
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Fig. 11, as expected, there is a certain level of difference between
the Bayesian updated result and the exact result due to the sim-
plification of the dataset. The observational data is generated
from a single column time history analysis under a particular cor-
rosion level and does not include constraints from the superstruc-
ture that may affect the column’s response. However, the error is
small compared to the time saved to obtain the fragility function.
This is due to not needing to build the full bridge model, as well
as faster runtimes for each analysis with a reduced complexity
structural model. Similar to Fig. 8 for the full-bridge response
results, Fig. 12 shows the RMSE and maximum probability differ-
ence between the proposed approach and the existing approach
considering the single column response. For all damage states,
the proposed method shows faster convergence to lower error
results than the existing method. Table 4 quantifies the differ-
ence. Taking the RMSE and maximum difference thresholds again
as 6% and 10%, respectively, the average number of analyses
required to move below these error thresholds is 24, compared
to averages of 64 and 79 for the existing method, respectively.
Furthermore, the computational time required for each of these
simplified-column analyses is significantly reduced compared to
the existing approach based on results from the full-bridge
15
model. Table 4 shows that the minimum RMSE and probability
difference achieved is significantly lower, resulting in more accu-
rate results using the proposed approach for each damage state.
The outcomes show that even with data from the reduced com-
plexity finite-element model, the proposed approach results in
faster convergence and increased accuracy compared to existing
approaches.

Table 5 summarizes the computational cost of running nonlin-
ear time history analyses for the full-bridge model compared to a
single column for the exact, existing, and proposed approaches.
As shown in Figs. 8 and 9 and Tables 3 and 4, as the number of
analyses required to obtain stable fragilities varies somewhat
across the damage states, where applicable, the average number
of analyses required for the four damage states is shown. All anal-
yses are conducted on a computer with 16.0 GB RAM and i7-3770
processor. Note that readers can follow the proposed flowchart
(Fig. 2) to complete the updating procedure using the derived
equations, which can be easily set up in advance. The updating pro-
cess itself does not require any processing time as it follows the
derived updating rules. It can be performed either simultaneously
with the finite-element simulations or used as a post-processing
tool to analyze simulation results.
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Table 5 considers only the single-column model combined with
the proposed Bayesian updating approach, significantly reducing
the computation cost, with more than an order of magnitude sav-
ings from existing methods. Comparing with each method, the
computation time needed to obtain a stable updated fragility curve
for the corroded states is reduced by 98.7%, 96.8%, and 91.4% com-
pared to the exact, existing, and proposed approaches considering
the full bridge model, respectively. The savings in a computational
effort to build just a single column model compared to the full
finite-element bridge model is significant in addition to the analy-
sis time. Combining the reduced observational data type with the
proposed Bayesian updating approach achieves updated fragility
assessments with sufficient accuracy in failure probability from
the target fragility function for all damage states across hazard
intensities.
7. Conclusions

Dynamic analysis of large and complex finite-element models is
typically accompanied by high computational costs, especially for
high-fidelity structural finite-element models. Running probabilis-
16
tic analyses with a series of nonlinear dynamic analyses for prob-
lems considering a range of uncertainties requires even more
computational effort to obtain stable results, including to construct
fragility functions assessing structural risk. This paper presents a
methodology to obtain updated analytical fragility curves through
a Bayesian updating approach that is able to achieve accurate and
stable results with significantly decreased computational cost. The
conjugate Bayesian approach reduces the computational cost asso-
ciated with numerical integration. Instead, it directly modifies the
prior distribution parameters through updating rules to obtain a
closed-form expression for the posterior. The study uses observa-
tional data points generated based on the nonlinear time history
response (i.e., displacement ductility of the bridge column under
a particular corrosion level) from the numerical model to update
the fragility. The selection of the data points for updating consists
of two main parts. First, the ground motions used for generating
numerical observational data are selected, in this case from the
NGA-2 database consisting of 160 motions matching the hazard
characteristics for which the studied bridge type is common. Sec-
ond, the sequence of the ground motions used for the nonlinear
time history analysis is ordered such that the numerical data
points start at the mean PGA value and oscillate around the mean



Fig. 12. RMSE and maximum difference of failure probability for (a) & (b) DS-1, (c) & (d) DS-2, (e) & (f) DS-3, and (g) & (h) DS-4 for the proposed compared to existing
approaches considering single column response.

Y. Zhang and I. Tien Computers and Structures 270 (2022) 106832
with increasing deviation from the mean. This reduces the ran-
domness in the outcome and improves the robustness of the pro-
posed framework. The methodology is applied to assess the
fragilities of bridges considering the effect of corrosion.

Using the proposed updating rules in the context of conjugate
Bayesian inference, the proposed method decreases the time to
obtain stable fragility functions by reducing the number of nonlin-
ear time history analyses required. The proposed approach shows
faster convergence and results in more stable estimates of the fra-
gility function parameters. Compared to existing methods, the pro-
posed approach reduces the computational cost by 61% to achieve
RMSE under 6% and by 68% to achieve maximum probability differ-
ence under 10%. It is proposed to reduce computation time even
further by performing nonlinear analyses at the component level
only rather than for the full structure. Doing so reduces the compu-
tational cost by as much as 96.8% compared to existing approaches,
with the 95% confidence interval fragility estimates capturing the
exact fragility values across almost all damage states and loading
intensities. While the proposed approach is demonstrated to
update the fragility function based on numerical structural
response information considering the effect of measured corrosion
levels, the proposed approach provides a framework that enables
updating fragility curves by combining information from experi-
17
mental testing and hybrid simulation, or other types of observa-
tional data (i.e., sensor data, etc.).

As structures age, the safety evaluation and risk assessment of
aging structures under natural deterioration mechanisms (e.g., cor-
rosion attack) and dynamic loading conditions (e.g., seismic haz-
ards) is becoming increasingly critical. A faster and more reliable
method is needed to accomplish this goal. The proposed method
provides researchers and engineers with an efficient, accurate,
and reliable approach to perform bridge risk assessments. It pro-
vides a tool to perform seismic fragility assessment of aging struc-
tures with ease, facilitating engineering tasks such as identifying
the most vulnerable bridges in a network, and prioritizing
resources for rehabilitation, retrofit, and repair to protect critical
assets. In addition, in light of recent developments [19,51,6], one
could incorporate the proposed approach to evaluate and assess
the resilience of structures in conjunction with models such as dig-
ital twins for efficient updating of structural analysis results con-
sidering factors such as multiple natural hazards and climate
change.

Appendix: Comparison of performance between normal and
lognormal prior distributions.

The following comparison is performed in terms of resulting
RMSE and maximum difference of failure probability for DS-4 with
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Table 4
Comparison of computational cost and accuracy between the proposed (single column response) and existing approaches.

Num. of Analyses Required RMSE � 6% Max. Prob. Diff. (�10%) Min. RMSE (%) with 50
Observ. Data

Min. Max. Prob. Diff. (%)
with 50 Observ. Data

Proposed Existing Proposed Existing Proposed Existing Proposed Existing

DS-1 25 61 26 80 0.65 3.20 1.63 6.51
DS-2 23 65 23 79 0.14 3.96 0.22 6.71
DS-3 23 65 23 79 0.15 4.02 0.22 6.77
DS-4 25 65 24 79 2.81 4.07 3.78 6.85

Table 5
Comparison of computational cost between using observational data from the full-bridge and single-column finite-element models.

Exact
(Full Bridge)

Existing
(Full Bridge)

Proposed
(Full Bridge)

Proposed
(Single Column)

Average Time Per Analysis (min.) 14 14 14 0.6
Num. of Analyses Required 160 79* 25* 50
Total Computation Time (min.) 2240 948 350 30
% Reduction Compared with Single Column 98.7% 96.8% 91.4% –

* Average number of analyses required for four damage states.
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Fig. 13. (a) RMSE and (b) maximum difference of failure probability for DS-4 with 20% mass loss.
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20% mass loss using normal compared with lognormal prior distri-
butions. Results are shown in Fig. 13.

The results show that both distribution types converge to a sim-
ilar level of accuracy, e.g., once the number of observed data points
reaches 25 in this case. However, the assumption of a normal dis-
tribution for the prior distributions leads overall to more accurate
fragility estimations, particularly when fewer numbers of observed
data are available.
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