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Abstract: The fifth generation (5G) technology standard for cellular networks is currently being developed and is in the early stages of
rollout across the United States. This upgrade from 4G LTE (long-term evolution) will not only have implications for the telecommunications
network itself, but also on the many critical infrastructure systems that will use and depend on 5G for operations and functionality. Cellular
vehicle-to-everything (C-V2X) technology utilizes 5G and has the potential to improve the safety and efficiency of the transportation system
by allowing vehicles to communicate with one another and automating certain driving features. However, it is important to consider the risks
that 5G brings, including cybersecurity risks, and how attacks through the 5G network can disrupt a traffic network that includes C-V2X
technology. This paper presents a method to characterize the effects of several risk scenarios. Compared to prior qualitative risk assessments,
outcomes include quantitative indicators measuring system safety and performance for analysis. The approach enables a more detailed and
rigorous assessment of interdependent systems risks between the telecommunications and transportation networks than previously possible,
particularly in the transition to 5G. A range of potential risk scenarios are assessed. The results show that cyberattacks that alter the behavior
of vehicles cause delays across the entire network, cascading across the system and affecting more than just the vehicles directly targeted. The
simulations show different levels of traffic delays and numbers of collisions for each risk scenario, indicating that the effects of a cyberattack
can differ widely depending on the specifics of the attack. The simulation is easily adaptable to the location, C-V2X features, and risk
scenarios of interest. Results provide information to formulate and prioritize risk mitigation strategies as the technology is developed to
minimize the impacts of these attacks and system disruptions. DOI: 10.1061/AJRUA6.0001220. © 2022 American Society of Civil
Engineers.

Author keywords: Risk assessment; Hazard analysis; Cybersecurity; Cyberattack; Connected and automated vehicles; Cellular vehicle-to-
everything (C-V2X) communications; Smart transportation systems; Interdependent systems; Cascading effects.

Introduction

Fifth generation (5G) technology will bring improvements to the
speed and reliability of the telecommunications network (CISA
2020). It also creates opportunities for improving capabilities in
many other critical infrastructure sectors, including transportation
systems (CISA 2020), and applications where real-time system
monitoring, feedback, and control is desired. Cellular vehicle-to-
everything communication (C-V2X) uses 5G to allow vehicles
to communicate with other vehicles and roadside units (RSUs) that
broadcast information about possible hazardous conditions on the
road (GSMA 2019). Vehicles with V2X capabilities and some level
of automation are then able to respond accordingly. This inter-
dependence between the telecommunications and transportation
systems means that attackers can take advantage of vulnerabilities

within the 5G network to target smart vehicles and put passengers
at risk. Previous studies have found interdependencies to be key in
assessing infrastructure system vulnerabilities and risk (Guidotti
and Gardoni 2018; Applegate and Tien 2019). The importance
of considering such connections in assessments of system risk is
increasing in criticality, particularly with the increasing dependen-
cies of infrastructure systems on communications for operations.
While 5G will increase the capabilities of connected transportation
systems, it will also introduce new risks to the network. Within this
environment, it is essential to understand how the new cybersecur-
ity risks that come with 5G may have broader impacts on a traffic
network with 5G-enabled vehicle automation. This study is the first
of its kind to quantify the risks associated with 5G on connected
dependent transportation networks. With 5G in the early stages of
its rollout process and 5G-V2X technology at an even earlier stage
of development, it is important to begin to anticipate the risks that
will be faced and be able to quantitatively assess the risk landscape
to identify critical risks and inform decisions to build safer systems
for the future.

Background and Related Work

Most existing work assessing the cyber vulnerabilities of 5G is
qualitative. Batalla et al. (2020) summarized security concerns and
potential impacts largely based on theoretical assessment and
expert opinion. The study characterized each scenario by probabil-
ity of occurrence (“hard to imagine,” “might happen,” “certainly
can happen”) and the severity of consequences (“moderate,”
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“significant,” “catastrophic”). It then combines these to classify
each risk scenario into a “low,” “medium,” “high,” or “critical” risk
level. These categories provide a general assessment of the risk sce-
narios but give little detail characterizing the consequences and
heavily depend on the qualitative evaluation done by the authors.
It also does not include analysis of any specific impacts of 5G risks
on interdependent networks.

Ahmad and Adnane (2016) investigated risk scenarios affecting
connected and automated vehicles (CAVs), similarly assigning
numbers based on qualitative categories for likelihood of occur-
rence and severity of the impacts. A risk score is then calculated
for each risk scenario by multiplying the likelihood of occurrence
and severity of impacts. This results in a numerical risk score but
gives minimal detail about the type of impact caused by each risk
scenario. While the method described is relevant to the evaluation
of risk scenarios affecting CAVs, the study does not specifically
target risk scenarios for 5G-enabled cellular V2X technology.

Farid et al. (2020) summarized the challenges that come with the
integration of 5G technology into smart healthcare and transporta-
tion. Their work does not assess specific risk scenarios but rather
provides an overview of the issues that must be addressed as these
applications are developed. For smart transportation, these include
privacy, the ethics of how to program a vehicle’s response in the
moments before an unavoidable collision, and who is responsible
for collisions that occur between automated vehicles. For smart
healthcare, these are focused more on the efficient and effective
handling of patient data across multiple platforms.

Overall, there is a gap in the research of being able to quanti-
tatively assess risks impacting the critical infrastructure networks
interdependent with 5G. Those studies that do exist provide a gen-
eral and largely qualitative examination of the risk landscape. The
lack of real-world data and large number of unknowns at this early
stage in the technology’s development makes it challenging to do
quantitative analysis. However, because of the safety implications
of potential attacks on automated vehicles and connected transpor-
tation systems, it is essential to understand these risk scenarios and
their impacts in as much detail as possible to properly prepare for
these situations before they occur under real-world operational con-
ditions. Simulations provide a way to understand the interdepend-
ent behavior of 5G and traffic networks in more detail without
relying on observational data.

Use-case testing, the evaluation of a traffic network’s perfor-
mance in specific scenarios of interest, is an established method
for testing the performance of CAVs (Yue et al. 2020). This can
be done by collecting and analyzing real-world data and grouping
like scenarios, an often time- and cost-ineffective approach. Micro-
scopic traffic simulations provide a faster and less expensive way of
simulating specific situations of interest (Yue et al. 2020). Yue et al.
(2020) described a method for using a network level traffic simu-
lation created using the Simulation of Urban Mobility (SUMO)
software to extract a set of typical scenarios (e.g., U-turns, front and
rear-end collisions), which can subsequently be used to evaluate the
performance of a vehicle’s connectivity or automation features us-
ing a set of indicators. This is valuable for evaluating the perfor-
mance of CAVs in everyday driving conditions. However, the study
does not consider scenarios caused by cyberattacks or malfunctions
of the network that provides the vehicle connectivity and auto-
mation, or the impacts of these scenarios on network safety and
performance.

Wang et al. (2019) simulated a network with C-V2X using 5G.
However, the purpose of that paper is to simulate various implemen-
tations of connectivity and automation features to understand the reli-
ability and efficiency of the telecommunications network through
indicators including packet reception ratio, spectral efficiency, and

data volumes. While this work helps to optimize the 5G-enabled
C-V2X features, there is work to be done to understand the vulner-
abilities of 5G in this smart vehicle application, particularly on the
dependent transportation network and their consequences for drivers.

In this paper, we present a methodology to assess the inter-
dependent relationship between a 5G network and vehicles with
C-V2X features by simulating 5G risks scenarios in a traffic net-
work containing CAVs to assess the impacts of potential risk sce-
narios on the safety and performance of the traffic network. The
outcomes include multiple quantitative indicators related to system
safety and performance for each scenario that are able to be used to
compare impacts and make prioritization decisions across risk sce-
narios. The main advancement of the proposed methodology is that
it provides more detailed information about various types of con-
sequences (safety, efficiency) than previous work that qualitatively
categorizes risk scenarios using expert opinion. The ability to
provide quantitative indicators of risk scenario impacts minimizes
the subjectivity of the classifications used in previous studies and
allows for more objective comparison of the performance of the
network under various targeted attack or system malfunction situa-
tions. The outcomes from simulations and analyses like these
are especially important in an area as new as 5G-enabled C-V2X
because they can help users, planners, and decision-makers to more
rigorously and comprehensively understand cybersecurity risks.
Being able to compare the outcomes based on the quantitative risk
scenario indicators supports the development and prioritization of
mitigation strategies to address vulnerabilities before systems are
implemented to improve network performance and reduce the risks
to drivers and system users.

Methodology

Simulation and Analysis Workflow

The analysis workflow takes relatively simple inputs defining the
traffic network, vehicles, and communications parameters. Outputs
of the simulation include vehicle-specific values, which are then
converted into the quantitative indicators used to measure safety
and performance of the network. The programs used for the sim-
ulations are the SUMO and MOSAIC programs developed by
Eclipse. SUMO is a microscopic traffic simulator, which allows us
to simulate the movement of many individual vehicles over a traffic
network (Lopez et al. 2018). MOSAIC provides features to simu-
late cellular vehicle communication and vehicle automation fea-
tures through applications (i.e., scripts that send/receive messages
and specify a device’s response to messages) used by the vehicles,
RSUs, and the server in the SUMO simulation (Schrab and
Protzmann 2021).

Inputs to the analysis include the map of the area of interest,
comprising the network of roads over which the simulated vehicles
will travel. This can either be a hypothetical network created within
SUMO or a real-world network imported from OpenStreetMap
(OpenStreetMap contributors 2015). For this study, the network
used is a section of downtown Atlanta as shown in Figs. 1(a
and b). Only publicly available data are needed to run this type
of simulation. The number of vehicles and duration of the simula-
tion is specified and can be adjusted to simulate typical traffic in the
location of interest or based on time-of-day considerations. For this
simulation, 650 vehicles are included over a simulation duration of
1,000 s. The vehicles travel along random routes through the net-
work, defined using the SUMO program for random trips, which
takes in the road network and generates a set of routes from random
start points to random end points throughout the network. Trucks
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and pedestrians can also be added into the simulation, although
none were added here. The additional inputs needed to define
the traffic scenario including vehicle automation and communica-
tion parameters are described in the following section.

To enable the 5G-based C-V2X communication, RSUs must be
placed at specific locations throughout the network. No specific
guidelines currently exist for RSU placement, and the coverage
of a single unit depends on many factors including its installation
height, sharp curves in the road, number of lanes, and the obstacles
that surround the unit (Audi, Ericsoon, Qualcomm, Swarco, and
Technische Universitat Kaiserlautern 2020). It is estimated that for
highways, RSUs can be placed about 3 km apart (Audi, Ericsoon,
Qualcomm, Swarco, and Technische Universitat Kaiserlautern
2020). In urban areas, RSUs can be placed uniformly throughout
the network, or specifically in areas with high vehicle density. Typ-
ical distances between RSUs are 300–1,000 m, although in dense,
urban areas, shorter distances may be necessary to account for in-
terference from vehicles and buildings (5GAA 2019). Multiple
more complex methods also exist to optimize RSU placement

(Shi et al. 2020). In the methodology proposed in this paper,
RSU devices are individually added at the desired latitude and lon-
gitude coordinates, so they can be placed at an existing RSU site or
a planned RSU site. Without current standards for RSU distribu-
tion, for this simulation, RSUs were placed throughout the network
at every intersection to provide full coverage for the urban area of
study. Blocks are roughly 100 × 100 m. This RSU placement max-
imizes coverage along roads while minimizing overlap in the radii
serviced by neighboring RSUs. Mavromatis et al. (2019) have
found that street intersections are optimal locations for RSUs be-
cause they maximize line-of-sight coverage (important because
buildings interfere with 5G signal). Additionally, RSUs can be in-
stalled on existing lamp posts and traffic lights, often found on or
near street corners, to facilitate access for installation and mainte-
nance (Mavromatis et al. 2019). The resulting RSU placement is
both cost-efficient and feasible. However, the locations of the RSUs
can easily be adjusted based on the network being studied and dis-
tributed as desired. The RSU communication ranges vary between
50 and 400 m as indicated in the risk scenario simulations. Fig. 2

(a) (b)

Fig. 1. (a) Section of downtown Atlanta used as an input to the SUMO simulation (base map © OpenStreetMap contributors); and (b) corresponding
road network created and used for simulation and analysis.

Fig. 2. Visualization of simulation with vehicles, RSUs, and message communications indicated. (Base map © OpenStreetMap contributors.)
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shows a visualization of the simulation, with individual vehicles
indicated with the car icons and RSUs indicated with the antenna
icons. The step size of the simulation is 1 s. RSUs and vehicles
flash green when they are receiving a message and red when send-
ing a message. Otherwise, the units appear gray.

Once the network and vehicles are defined, we are able to run
simulations over a range of scenarios. The scenarios include any
parameter changes that simulate an attack or malfunction event on
the system. As individual vehicle outcomes are tracked, we obtain
detailed outputs from each simulation and scenario. We then ana-
lyze the outcomes over the distribution of all vehicle outputs to
obtain the quantitative indicators of the traffic network’s perfor-
mance. The overall simulation and analysis workflow is shown
in Fig. 3. The rounded boxes in Fig. 3 describe the types of data
input to and output from the traffic model, and the nonrounded
boxes indicate main steps taken to generate the outputs.

5G Network

All C-V2X communications in this study are conducted over 5G.
The following parameters were specified in the simulation for
the 5G network. The maximum uplink and downlink bitrates were
set to 1.5 gigabits per second (Gbps), the bitrates for mmWave
(O’Donnell 2019). Messages were sent with a 3-ms latency
(Ganesan et al. 2019). A packet loss probability of 0.08% was used
to simulate a network reliability of 99.92%, a reliability found for
5G vehicle communication applications (Xiang et al. 2020).

Roadside Units

RSUs serve as relays between vehicles and between the server and
vehicles. One characteristic of 5G is the use of many smaller RSUs
to facilitate short-distance, high-speed communications between
devices and, in this case, vehicles. RSUs also forward messages
from the server out to any vehicles within their range. In several of
the risk scenarios studied, RSUs forward information about hazard-
ous conditions, whether correct or incorrect, to vehicles.

Server

The server acts as a traffic management center and has information
about a wider network than do the individual RSUs. The server
sends decentralized environmental notification messages (DENMs)
to the appropriate RSU to forward to the vehicles within its broad-
casting range. DENMs warn vehicles of hazards on the road, such
as a collision ahead, an obstacle on the road, or otherwise hazard-
ous environmental conditions in the area (e.g., fog, ice).

Vehicle Automation and System Communication
Parameters

Within the network, the proportion of automated and nonautomated
vehicles needs to be defined. While the vision for many is for fully
automated transportation systems in the future, CAVs will enter the
transportation system gradually as the technology becomes com-
mercially available. A McKinsey study estimates that by 2030,
about 50% of new vehicles sold will be “highly autonomous”
and up to 15% of new vehicles sold will be fully autonomous
(Kaas et al. 2016). The simulations in this study are composed
of 50% nonautomated and 50% vehicles with the automated fea-
tures subsequently described. This vehicle makeup represents a
scenario relatively near-term in the future, with the proportion of
nonautomated and automated vehicles easily adjusted to different
future scenarios.

At the start of the simulation, each automated vehicle’s distance
sensor is activated, allowing it to detect the distance between
itself and the vehicle ahead. This sensor has a range of 4 m
(Jahromi 2019). At every time step (1 s), each vehicle broadcasts
a cooperative awareness message (CAM) to all vehicles and RSUs
within its broadcast range. The broadcast radius for CAVs can
range from 360 to 700 m (Ganesan et al. 2019). In this simulation,
each vehicle has a range of 400 m over which it can broadcast
messages.

Each vehicle also has an automated emergency braking feature.
Although the driver is still expected to be in full control of braking,
this serves as an additional safety feature in case the driver does not
react in time. This feature is based on functionality first described
by Milanes et al. (2011). If the distance to the vehicle ahead has
decreased by more than 7 m in the last time step (1 s) and the dis-
tance to the car ahead falls below 15 m, the vehicle will sharply
reduce its speed.

When a vehicle detects a hazard using its activated environ-
mental sensors in its vicinity, the vehicle determines whether this
hazard is on its route. If it is on its route, the vehicle will reroute
to the fastest alternative route. This is done by using a MOSAIC
navigation module to find alternate routes to the vehicle’s desti-
nation, assign each an expected travel time using a MOSAIC cost
function, and then choose the alternate route with shortest
expected travel time. Then, the vehicle will send a DENM to all
vehicles and RSUs in its broadcasting radius alerting them of the
hazard. Rerouting can only be done once by each vehicle due to
the program’s limitations. Unlimited rerouting would intractably
increase computation time. If the vehicle receives a DENM warn-
ing of an environmental hazard in its vicinity, the vehicle will re-
duce its speed as a safety measure. DENMs can be sent by both
vehicles and servers.

Fig. 3. Overall simulation and analysis workflow.
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In the overall C-V2X system, vehicles periodically broadcast
CAMs containing information about themselves and sensor data
about their surroundings to other vehicles and RSUs within range.
The other vehicles can react appropriately to this information.
RSUs forward the gathered information to the server, which has
a larger overview of the network. The server then sends DENMs
warning vehicles of hazardous conditions or traffic in their vicinity.
A diagram illustrating the system is shown in Fig. 4. Table 1 pro-
vides a summary of the simulation settings and parameter values
that are defined in the analysis, including overall simulation set-
tings, 5G network parameters, and vehicle parameters.

In Table 1, the vehicle parameters are defined as follows: min-
Gap is the minimum distance that a vehicle leaves between itself
and the vehicle ahead when stopped, accel and decel are the typical
acceleration and deceleration speeds of a vehicle, sigma denotes the
driver imperfection value between 0 and 1 where 0 represents per-
fect driving, tau denotes the time headway (the time needed to
reach the vehicle ahead while traveling at its current speed) that
a vehicle attempts to maintain between itself and the vehicle ahead

to be able to brake safely and leave the distance defined by minGap
between itself and the vehicle ahead when stopped, speedFactor is
a value greater than or equal to zero that represents the fraction
of the speed limit that a vehicle will travel at under ideal conditions
(e.g., if speedFactor = 1, the vehicle will travel at the speed limit
under perfect conditions), communication range is the radius over
which a vehicle can send messages to other vehicles and RSUs, and
distance sensor range is the distance over which a vehicle can detect
the distance between itself and the vehicles immediately ahead and
behind.

The features included in this study simulate a low level of ve-
hicle communication and automation. As this technology is devel-
oped and more automated vehicles are on the roads, additional
features can be added to this model to simulate relevant scenarios
more accurately. However, even with this low level of automation,
the connection between 5G infrastructure and vehicles creates
opportunities for attackers or telecommunications network mal-
functions or disruptions to unexpectedly alter the behavior of the
vehicles. Results in this study show the ranges of effects of these
vulnerabilities across the transportation system.

Quantitative Performance Indicators

To assess the performance of the network, five main quantitative
indicators are used. Time loss and stoppage time measure changes
in network performance, the number of vehicles affected and the
number of vehicles unable to enter the network measure overall
impacts on the network, and the number of collisions measures
safety over the network. All scenarios contain 650 vehicles. The
time loss and stoppage time indicators are given for each vehicle
in the analysis and for consistency in the comparison across ve-
hicles, and these indicators are measured as a percentage of each
vehicle’s trip time. For example, 70% time loss means that the ve-
hicle takes 70% more time to complete its trip than under ideal no
traffic conditions; 80% stoppage time means that the vehicle spent
80% of its trip time stopped. The number of vehicles affected is
counted as the cumulative number of vehicles in the scenario that
are found to have a greater time loss or stoppage time than it would
have had in a default scenario. The default scenario is one where
no attacks or malfunctions occur. To show the impact of each risk
scenario, results in the following sections for each risk scenario are

Fig. 4. C-V2X system diagram with vehicles, RSUs, and server.

Table 1. Summary of simulation settings and parameter values

Parameter category Parameter Value

General simulation settings
Time step (s) 1

Total simulation duration (s) 1,000
Total number of vehicles 650

RSU communication range (m) 50–400 (varies by simulation)
5G network parameters

Uplink bitrate (Gbps) 1
Downlink bitrate (Gbps) 1

Latency (ms) 3
Packet loss probability (%) 0.08

Vehicle parameters Nonautomated Automated
minGap (m) 2.5 2.5
Accel (m=s2) 2.6 2.6
Decel (m=s2) 4.5 4.5

Sigma 0.5 0.0
Tau 1.0 1.0

speedFactor 1.0 1.0
Communication range (m) 400 400
Distance sensor range (m) 4 4
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shown in comparison with the outcomes in comparison with the
default scenario. If a vehicle is found to have an increased time
loss and stoppage time, it is counted as an affected vehicle only
once. The number of vehicles unable to enter the network counts
the cumulative number of vehicles that are unable to start their trips
over the full scenario run time due to congestion throughout the
network. The number of collisions is counted cumulatively over
the full network and full scenario run time. Table 2 summarizes
the safety and performance indicators defined and used in this
study.

Additionally, for some of the risk scenarios, traffic congestion in
the road network was so high that some of the 650 vehicles could
not begin their trips. We counted the number of vehicles that did not
enter the network as a quantitative performance indicator for each
scenario as well.

Risk Scenarios

The risk scenarios analyzed in this study are summarized in Table 3
and are described in further detail in the results section for each
specific scenario. Table 3 presents the types of attacks analyzed
and how vehicles are affected within each attack scenario. For a
given risk, we ran variations of each scenario to investigate the
effect of parameters such as number of vehicles affected, number
of RSUs affected, RSU radius, and RSU chosen on the results.
In some cases, risk scenarios are combined to investigate com-
pounding effects of multiple risks. Additional variations of the sce-
narios analyzed, as well as additional risk scenarios of interest, can
be run using the proposed methodology. Although not a compre-
hensive list of all potential attacks on a smart transportation system,
these scenarios represent a variety of ways in which the behavior of
a vehicle can be manipulated and C-V2X features can be exploited

via 5G to disrupt a transportation system. The risk scenarios ana-
lyzed represent a range of currently identified potential vulnerabil-
ities of the interdependent 5G and traffic networks, affecting the
behavior of vehicles in different ways, resulting in a comprehensive
view of the impacts of 5G risks on connected transportation
systems.

Results

Jamming Scenario Targeting Individual Vehicles

This simulates a scenario in which an attacker seeks to inhibit a
selected vehicle’s ability to communicate with other vehicles. It was
simulated by changing the driver imperfection value and removing
vehicles’ automation features. Drivers of vehicles with V2X capa-
bilities and automated driving features have higher likelihoods of
becoming distracted while driving due to overreliance on the ve-
hicle’s automation (Aria et al. 2016). The driver imperfection value,
typically denoted as the sigma value, ranges from 0 to 1, with 0
representing perfect driving. In addition to disabling the vehicle
automation features, the driver imperfection value was increased
from 0.5 to 0.9. Fig. 5 shows the total distributions of time loss
and stoppage time for all vehicles under this scenario. To investi-
gate the differences in impact between single versus multiple ve-
hicles being affected by a jamming attack, three risk scenarios were
run, with one, two, and five vehicles being jammed. Fig. 5 shows
these results compared with those from the default no attack or
malfunction scenario. To quantify the differences in the distribu-
tions across the scenarios, Table 4 provides the statistics and cor-
responding quantitative indicators, including time loss, stoppage
time, vehicles affected, and collisions, for the scenario outcomes.

To assess the impacts of each risk scenario over the full system,
full distributions of values for time loss and stoppage time for each
scenario are given. Included are results for not only how the ve-
hicles targeted were affected, but also how their change in behavior
affects the surrounding vehicles across the system, including cas-
cading effects across vehicles not directly targeted. By doing
this, system-level performance and impacts are investigated. From
Fig. 5, the overall shapes of the distributions do not differ signifi-
cantly. However, the center of the stoppage time distribution shifts
slightly toward higher values as the scenario severity increases.
This result is provided in Table 4, with the slight increase in mean
stoppage time. To further examine severity in impacts of scenarios,
extreme values of the distributions are also quantified. Greater than
80 and 95% time loss and stoppage time are chosen as the extreme
impact thresholds. In the default scenario, there are no vehicles

Table 2. Summary of traffic network safety and performance indicators

Indicator Description

Time loss Time that is added to a vehicle’s trip due to traveling at a slower than ideal speed. It is the time that the vehicle would need to
complete the trip if it traveled at the speed limit for the entire trip subtracted from the time that the vehicle needed to
complete its trip in the scenario. This is an indicator of traffic congestion along the vehicle’s route.

Stoppage time Time that a vehicle spends at unplanned stops during its trip. It is measured as the amount of time that a vehicle spends
traveling at <0.1 m=s, also referred to as “waiting time” in programs such as SUMO. This is an indicator of more severe
traffic congestion than indicated by time loss.

Number of vehicles affected Used to estimate how widespread the impacts of each risk scenario are. A vehicle is counted as “affected” if it has a greater
time loss or stoppage time than it did in the default scenario. If it has both an increased time loss and stoppage time, it is
counted only once.

Number of vehicles unable
to enter the network

The number of vehicles that were unable to even begin their trip because their trip’s starting point was occupied by other
vehicles during the entire simulation time. This signifies significant traffic congestion.

Number of collisions The cumulative number of collisions that occurred in the scenario. This indicates severe safety consequences over the
network.

Table 3. Summary of risk scenarios analyzed

Type of attack Vehicles affected

Jamming attack Individual random vehicle
Fake environmental hazard warning Vehicles within range of RSU
Forced sudden braking Vehicles within range of RSU
Disabling of automated emergency
braking feature

Vehicles within range of RSU

Disabling of automated emergency
braking + forced sudden braking

Vehicles within range of RSU

Disabling of brakes Vehicles within range of RSU
Disabling of brakes + forced
sudden braking

Vehicles within range of RSU
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above 95% time loss or stoppage time. Few vehicles are stopped
over 80% of their total trip time and a moderate amount have a time
loss above 80% of their total trip time. The mean time loss is high
because of the large number of vehicles in the network. However,
nearly half of the vehicles spend no time stopped due to congestion.

Looking at the risk scenario results, the impacts of affecting a
single vehicle are noticeable, particularly with half of the vehicles
in the network being affected through some increase in stoppage
time or time loss compared with the default scenario. However,
changes to single vehicles (see the difference in results of the
One Vehicle Jammed case and the Two Vehicles Jammed case
in Table 4) are small and results show that the consequences depend
more on the specific vehicle(s) targeted than the number of vehicles
affected. This is because the vehicle routes vary widely and system-
level outcomes are greatly impacted by the characteristics (e.g., trip
route) of the specific vehicle(s) targeted. Jamming one vehicle
may have a larger effect than jamming a different vehicle, simply
because of what path it travels through the network. If a targeted
vehicle travels along more congested roads, jamming it will likely
affect more surrounding vehicles than a vehicle traveling through
the roads with less traffic. Rather than attacks directly affecting an
individual vehicle’s behavior, scenarios impacting vehicles through

the RSUs affect a larger number of vehicles, showing more con-
sistent trends and larger effects, and are investigated next.

Fake Environmental Hazard Warning Sent to Vehicles
Passing through Range of Affected Roadside Unit

In this scenario, the server sends a fake DENM and the affected
RSU alerts vehicles that there is ice on the road at the RSU’s lo-
cation. Vehicles receiving this fake message respond by slowing
down. To investigate the impact of varying RSU radii on the results,
Fig. 6 shows the distributions of time loss and stoppage time for all
vehicles under three risk scenarios, where the RSU has a radius of
50, 200, and 400 m. Table 5 provides the quantitative indicator
values for the three RSU radius variations.

From Fig. 6 and Table 5, each increase in RSU radius has a large
impact on the network indicators. There is a particularly large dif-
ference in the shapes of the distributions between the affected RSU
having a radius of 50 versus 200 m cases. Blocks in the network are
about 100-m wide and an RSU is placed at every corner. This
means that when the radius is 200 or 400 m, the ranges of the RSUs
will overlap, causing the vehicles in these overlapping regions to
reduce their speed more drastically. In particular, the mean stop-
page time is increased from 38.5% to 36.0% in the default and
50-m RSU cases, to 92.9% and 96.7% for the 200 and 400-m RSU
cases, respectively. Similarly, mean time loss increases from 74.9%
and 75.4% to 97.7% and 98.6%. From Fig. 6, the time loss and
stoppage time distributions exhibit significant distribution mass
at the extreme right-side values in the 200 and 400-m RSU cases.
This change in vehicle distribution outcomes is reflected in the
extreme values in Table 5, where, for example, the percentage
of vehicles with greater than 80% stoppage time increases from
1.2%–2.8% to 75.0%–83.1% of vehicles for the default, 50, 200,
and 400-m cases; and the percentage of vehicles with greater than
80% time loss increases 35.4%–35.9% to 74.9%–83.3%, respec-
tively. Similar increases are found for the percentage of vehicles
experiencing greater than 95% time loss and stoppage time. Finally,
an increase in the number of vehicles not able to enter the network
is also observed. In the 400-m RSU case, 30.8% of vehicles did not

Fig. 5. Distributions of time losses and stoppage times for vehicles in jamming scenario with variations in number of vehicles affected.

Table 4. Indicator values for jamming scenario with variations in number
of vehicles affected

Indicator Default

One
vehicle
jammed

Two
vehicles
jammed

Five
vehicles
jammed

Mean time loss 74.9% 70.1% 71.4% 73.0%
Mean stoppage time 38.5% 38.4% 38.9% 41.6%
% vehicles affected — 50% 49% 52%
Vehicles >80% time loss 35.4% 26.6% 23.7% 29.7%
Vehicles >80% stoppage time 1.2% 0.3% 0.3% 0.9%
Vehicles >95% time loss 0 0 0 0
Vehicles >95% stoppage time 0 0 0 0
% vehicles unable to enter network 0 0 0 0
# collisions 0 0 0 0
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even have the opportunity to enter the network to start their trips
due to the network being so congested from this disruption
scenario.

To further investigate the potential impacts of a fake DENM
scenario, the effect of the number of RSUs affected was also ex-
amined. Results are shown in Fig. 7 and Table 6 for one, two, and
three RSUs being affected.

From Table 6, the One RSU scenario affects the network by
increasing the number of vehicles that experience large amounts
(>80%) of stoppage time. In addition, nine vehicles are unable
to enter the network. Affecting the subsequent RSUs has a smaller
additional impact on the network. The Two RSU scenario has a
larger number of vehicles that never enter the network because
the point from which they begin their trip is blocked with traffic.

Fig. 6. Distributions of time losses and stoppage times for fake DENM scenario with variations in RSU radius.

Table 5. Indicator values for fake DENM scenario with variations in RSU
radius

Indicator Default

50-m
RSU
radius

200-m
RSU
radius

400-m
RSU
radius

Mean time loss 74.9% 75.4% 97.7% 98.6%
Mean stoppage time 38.5% 36.0% 92.9% 96.7%
% vehicles affected — 50% 73% 61%
Vehicles >80% time loss 35.4% 35.9% 74.9% 83.3%
Vehicles >80% stoppage time 1.2% 2.8% 75.0% 83.1%
Vehicles >95% time loss 0 2.0% 72.4% 82.4%
Vehicles >95% stoppage time 0 2.0% 34.5% 64.2%
% vehicles unable to enter network 0 1.4% 11.2% 30.8%
# collisions 0 0 0 0

Fig. 7. Distributions of time losses and stoppage times for fake DENM scenario with variations in number of RSUs affected.
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The effect, however, is small, and it is found that the impacts vary
depending on which RSUs are chosen. For example, results for
Two RSU and Three RSU alternate scenarios are shown in Fig. 8
and Table 7.

From Table 7, the Two RSU alternate results are similar to those
of the Three RSU variations, supporting the conclusion that addi-
tional affected RSUs have a smaller impact on the network than the
first affected RSU. However, the Three RSU alternate variation
shows how much the choice of RSU matters, with a greater pro-
portion of vehicles experiencing the extreme impacts of>95% time
loss and >95% stoppage time compared to the results from the
other scenarios. This suggests that multiple trials should be run
for these scenarios, whether that means randomly varying the trips
through the network or running a variation with different choices of
assets affected for the particular study area, location characteristics,
or scenarios of interest.

Forced Sudden Braking Affecting Vehicles Passing
within the Range of an Affected Roadside Unit

In this scenario, when a vehicle passes through the range of an af-
fected RSU, it is altered so that it brakes harshly and unexpectedly
throughout the rest of its trip. To simulate a high-risk case of this

scenario, one vehicle is forced to brake harshly every time it reaches
an arbitrary medium velocity of 40 km=h (25 mi=h). The results
for this scenario are summarized in Fig. 9 and Table 8 for one,
two, and three affected RSUs.

The effect of a single RSU being affected by this attack is large,
as seen from the increases in all of the indicators in Table 8. The
mean stoppage time in the One RSU scenario increased to 94.6%
from the default mean stoppage time of 38.5%. Similarly, the mean
time loss increased to 98.4% of the trip time. The percentages of
vehicles with high amounts of time loss and stoppage time (>80
and >95%) all had large increases, indicating that this scenario
caused a significant disturbance in the flow of traffic across the net-
work. In addition, 14.5% of vehicles were unable to even enter the
network and begin their trips due to increased network congestion.
This attack can affect a large proportion of the network (i.e., 70%–
80% of vehicles) without 70%–80% of the vehicles passing through
the range of the RSU because the behavior of vehicles is perma-
nently altered. This means that they brake suddenly for the rest of
their trip, causing vehicles near them to react by slowing down. The
overall impacts from this risk scenario, including cascading effects
across the system, are also reflected in the shapes of the distribu-
tions, which change significantly between the default and attack

Table 6. Indicator values for fake DENM scenario with variations in
number of RSUs affected

Indicator Default
One
RSU

Two
RSUs

Three
RSUs

Mean time loss 74.9% 75.4% 71.2% 73.9%
Mean stoppage time 38.5% 36.0% 36.3% 38.8%
% vehicles affected — 50% 42% 54%
Vehicles >80% time loss 35.4% 35.9% 26.7% 33.9%
Vehicles >80% stoppage time 1.2% 2.8% 1.3% 4.1%
Vehicles >95% time loss — 2.0% 0.8% 2.5%
Vehicles >95% stoppage time 0 2.0% 0.8% 1.4%
% vehicles unable to enter network 0 1.4% 2.8% 1.8%
# collisions 0 0 0 0

Fig. 8. Distributions of time losses and stoppage times for fake DENM scenario with alternate combinations of affected RSUs.

Table 7. Indicator values for fake DENM scenario with alternate
combinations of affected RSUs

Indicator
Two
RSUs

Two
RSUs

alternate
Three
RSUs

Three
RSUs

alternate

Mean time loss 71.2% 71.9% 73.9% 72.0%
Mean stoppage time 36.3% 41.7% 38.8% 38.0%
% vehicles affected 42% 50% 54% 48%
Vehicles >80% time loss 26.% 29.3% 33.9% 27.7%
Vehicles >80% stoppage time 1.3% 4.5% 4.1% 10.9%
Vehicles >95% time loss 0.8% 3.0% 2.5% 10.3%
Vehicles >95% stoppage time 0.8% 2.7% 1.4% 9.2%
% vehicles unable to enter network 2.8% 1.8% 1.8% 0
# collisions 0 0 0 0
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scenarios. This change is observed in Fig. 9, with large distribution
mass shifted to the high time loss and high stoppage time values
under the attack scenarios.

In this scenario, the effect of additional RSUs being affected
leads to a small decrease in the performance of the network. Be-
tween the Two RSU scenario and the One RSU scenario, the mean
time loss and stoppage times each increase by less than 1%. All
other indicators increase by 2–5% each, suggesting that affecting
an additional RSU increases traffic congestion, but to a much
smaller degree than the first RSU. The number of vehicles affected
decreases compared to the One RSU scenario, which may be attrib-
uted to the randomness of where the traffic congestion occurs.
Increased stoppage times in one part of the network may decrease
the traffic flow along other roads, decreasing the travel times for the
vehicles traveling along those roads. Similar trends can be seen
between the Two RSU and Three RSU scenarios, although in the
Three RSU scenario, the largest increase is of 2.4% in vehicles with
a stoppage time of >95%, and some of the indicator values de-
crease by about 1%. This reinforces the conclusion that RSUs affect
the flow of traffic across a complex network differently and the
choice of affected RSU matters. Future work includes investigat-
ing which characteristics (e.g., traffic within range, proximity to

another RSU, proximity to an intersection or other road feature,
etc.) cause an RSU to have a greater impact than another.

Disabling of Automated Emergency Braking Feature

In this scenario, when vehicles pass through an RSU’s range, the
emergency braking feature is disabled for the rest of the vehicle’s
trip. Note that the vehicle’s brakes remain functional, and the driver
is still able to brake manually. It is the automated vehicle feature
that is disabled. Results of this scenario and variations where one,
two, and three RSUs were affected are summarized in Fig. 10 and
Table 9.

The indicator values in Table 9 show that no change occurs in
the performance of the network due to the disabling of the emer-
gency braking feature. The distributions in Fig. 10 are also un-
changed across the default, One RSU, Two RSU, and Three RSU
scenarios, showing that the vehicles’ trips were completely unaf-
fected by the disabling of this automation feature. It is likely that
the vehicles did not need to use the emergency braking feature in
this scenario. The following scenario combines this scenario with
the forced sudden braking scenario to investigate the potential
impacts of a compounded risks scenario.

Disabling of Automated Emergency Braking Feature
and Forced Sudden Braking of Vehicles Passing
through Range of Affected Roadside Unit

This scenario is a combination of two of the previous ones. Here,
vehicles passing through the range of an affected RSU both brake
suddenly throughout the remainder of their trip when they reach
40 km=h, and their emergency braking feature is disabled. It inves-
tigates the possible consequences of combined risks, with com-
pounded effects across the network. Results of variations where
one, two, and three RSUs are affected are shown in Fig. 11 and
Table 10. A comparison of the indicator values from this combined
risk scenario with the results from the individual forced sudden
braking scenario from the previous section is provided in Table 11
in terms of percentage change for each indicator.

Fig. 9. Distributions of time losses and stoppage times for forced sudden braking scenario with variations in number of RSUs affected.

Table 8. Indicator values for forced sudden braking scenario with
variations in number of RSUs affected

Indicator Default
One
RSU

Two
RSUs

Three
RSUs

Mean time loss 74.9% 98.4% 98.5% 98.5%
Mean stoppage time 38.5% 94.6% 95.1% 95.3%
% vehicles affected — 78% 72% 74%
Vehicles >80% time loss 35.4% 84.7% 86.6% 85.5%
Vehicles >80% stoppage time 1.2% 83.8% 86.4% 85.1%
Vehicles >95% time loss 0 82.9% 85.5% 83.6%
Vehicles >95% stoppage time 0 46.4% 50.7% 53.1%
% vehicles unable to enter network 0 14.5% 19.5% 18.3%
# collisions 0 0 0 0
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From Table 10, the performance of the network decreases
slightly in each of the three variations of this combined risk sce-
nario compared to the corresponding forced sudden braking sce-
nario described in Table 8. For clarity, the differences in values
between the individual sudden braking scenario and the combined
sudden braking + disabling of emergency braking scenario are
provided in Table 11. All except two of the indicators increase,
indicating that the flow of traffic is disrupted even more with
the disabling of the emergency braking feature in vehicles passing
through the affected RSU. The magnitude of the increases varies,
with the largest occurring for the number of vehicles with stoppage
times >95% of trip duration. As the number of vehicles with stop-
page times >80% did not increase to the same degree, this increase
is due to many of the vehicles with already high (between 80% and
95%) stoppage times being affected disproportionately. This can be
attributed to the fact that the same RSUs both caused sudden brak-
ing and disabled the emergency braking feature, affecting the same
set of vehicles. This set of directly affected vehicles are likely to be
the ones with highest stoppage times. The largest increases for each
indicator can be seen in the One RSU scenario, while the increases
are significantly smaller in the Two RSU and Three RSU scenarios.

Similar to the other scenarios, the first RSU has the largest impact
on the network while additional affected RSUs have a smaller ef-
fect. The shapes of the distributions in Fig. 11 are similar to those in
Fig. 9, with a further shift toward the right. Although the disabling
of emergency brakes alone had no effect on the network, it did ex-
acerbate the negative impacts on the traffic network when com-
bined with the sudden braking scenario.

Disabling of Brakes

All of the scenarios analyzed thus far, while in several cases caus-
ing significant network performance delays, no safety impacts in
terms of increased collisions were observed. This scenario inves-
tigates a more severe safety concern in which when a vehicle passes
through the range of an affected RSU, the brakes on the vehicle are
disabled for the remainder of the vehicle’s trip. Results of this sce-
nario with one, two, and three affected RSUs are summarized in
Fig. 12 and Table 12.

The permanent disabling of brakes, as expected, causes a large
disturbance in the network, as shown by the distributions in
Fig. 12 and the indicator values in Table 12. Even with one
RSU affected, 178 collisions occurred, and 290 vehicles were
not able to begin their trips through the network at all, suggesting
heavy traffic congestion caused by the many collisions. Mean
time loss and mean stoppage time are also very high (between
95% and 97%) for all three variations of the scenario. The indica-
tors are similar for the three variations, with some increasing and
some decreasing as the number of affected RSUs changes. In all
cases, this scenario shows severe safety and efficiency consequen-
ces. Results show that affecting even just one RSU in this way
leads to large systemwide impacts. Of particular concern is the
safety impact, indicated by the large number of collisions in the
network within the 1,000-s analysis time frame. It is critical to
consider such risk scenarios as 5G is deployed and vehicles be-
come increasingly connected and dependent on the 5G telecom-
munications network for operations.

Fig. 10. Distributions of time losses and stoppage times for the disabling of emergency braking feature scenario with variations in number of RSUs
affected.

Table 9. Indicator values for the disabling of emergency braking feature
scenario with variations in number of RSUs affected

Indicator Default
One
RSU

Two
RSUs

Three
RSUs

Mean time loss 74.9% 74.9% 74.9% 74.9%
Mean stoppage time 38.5% 38.5% 38.5% 38.5%
% vehicles affected — 0 0 0
Vehicles >80% time loss 35.4% 35.4% 35.4% 35.4%
Vehicles >80% stoppage time 1.2% 1.2% 1.2% 1.2%
Vehicles >95% time loss 0 0 0 0
Vehicles >95% stoppage time 0 0 0 0
% vehicles unable to enter network 0 0 0 0
# collisions 0 0 0 0
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Disabling of Brakes and Forced Sudden Braking of
Vehicles Passing through Range of Affected Roadside
Unit

Finally, this scenario represents the most extreme case in which
vehicles’ behavior is severely altered, causing very dangerous

driving conditions. The attacker gains control over the vehicles’
brakes, causing the vehicles to brake suddenly for the remainder
of the trip, while also disabling the vehicles’ brakes from manual
operation. Results from variations of this scenario with one, two,
and three affected RSUs are given in Fig. 13 and Table 13.

This scenario shows how combining multiple risk scenarios ex-
acerbates the negative impacts of these attacks on the safety and
performance of the network. While the individual forced sudden
braking scenario caused mean time loss and stoppage times as pre-
sented in Table 8 that were similar to, and actually on average about
2% greater than, the corresponding values in this scenario presented
in Table 13, it did not cause any collisions. Similarly, the mean time
loss and stoppage times of each variation of the individual dis-
abling of brakes scenario presented in Table 12 were similar to
the corresponding values in this scenario. These indicators alone
would suggest that the traffic network performance was close to,
and in some cases more efficient than, the outcomes under this
combined risk scenario compared to the individual risk scenarios.
However, it is important to look across the indicators. From a safety
point of view, the outcomes of the combined risk scenario were, in
fact, catastrophic. The combination of disabling of brakes with
forced sudden braking created more dangerous situations across
the network where braking was necessary to avoid a collision; how-
ever, brakes were disabled, resulting in a significant increase in the
number of collisions. All three variations of the previous scenario
where brakes were disabled only had nearly 200 collisions. The
number of collisions in the three variations here is about double
that amount. More than half of the vehicles in the system were
involved in collisions.

To better understand the cascading effects of such a severe
event, we can look at the distributions in Fig. 13, where the results
show a set of vehicles with time losses and stoppage times near
100%, as well as a set of vehicles with times losses and stoppage
times near 0%, with few vehicles in between. This, along with
the decreases in mean time loss and mean stoppage time de-
scribed at the beginning of this section, suggest that this combined
scenario caused a large number of collisions, which lead to

Fig. 11.Distributions of time losses and stoppage times for the disabling of emergency braking feature and forced sudden braking combined scenario
with variations in number of RSUs affected.

Table 10. Indicator values for the disabling of emergency braking feature
and forced sudden braking combined scenario with variations in number of
RSUs affected

Indicator Default
One
RSU

Two
RSUs

Three
RSUs

Mean time loss 74.9% 98.8% 98.7% 98.7%
Mean stoppage time 38.5% 96.3% 95.7% 96.0%
% vehicles affected — 65% 71% 70%
Vehicles >80% time loss 35.4% 86.3% 87.3% 87.3%
Vehicles >80% stoppage time 1.2% 85.9% 86.7% 86.9%
Vehicles >95% time loss 0 85.7% 86.5% 86.3%
Vehicles >95% stoppage time 0 65.6% 59.3% 65.3%
% vehicles unable to enter network 0 25.8% 20.2% 20.2%
# collisions 0 0 0 0

Table 11. Difference in indicator values between combined disabling of
emergency braking feature and forced sudden braking scenario and
individual forced sudden brakingscenario (percentage change between
Tables 10 and 8)

Indicator One RSU Two RSUs Three RSUs

Mean time loss þ0.4% þ0.2% þ0.2%
Mean stoppage time þ1.7% þ0.6% þ0.7%
% vehicles affected þ13% −1% −4%
Vehicles >80% time loss þ1.6% þ0.7% þ1.8%
Vehicles >80% stoppage time þ2.1% þ0.3% þ1.8%
Vehicles >95% time loss þ2.8% þ1% þ2.7%
Vehicles >95% stoppage time þ19.2% þ8.6% þ12.2%
% vehicles unable to enter network þ11.3% þ0.7% þ1.9%
# collisions 0 0 0

© ASCE 04022004-12 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 2022, 8(2): 04022004 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Ir
is

 T
ie

n 
on

 0
2/

27
/2

2.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



traffic congestion that slowed down vehicles behind the collision,
while also reducing the flow of traffic along roads ahead of
where the collisions occurred. This would allow vehicles traveling
along those road segments to maintain low time loss and stoppage
times. All three variations have similar values for all of the in-
dicators and there is not a consistent increase in these as the
number of affected RSUs increases. This suggests that for a net-
work of this size, attacking additional RSUs has lesser effects
on worsening the safety and performance of the network. However,
the combined attack of disabling of brakes and forced sudden
braking on any RSU, particularly if it occurs in an urban area,
would lead to consequences across the system that are severe
and potentially catastrophic.

Fig. 12. Distributions of time losses and stoppage times for the disabling of brakes scenario with variations in number of RSUs affected.

Table 12. Indicator values for the disabling of brakes scenario with
variations in number of RSUs affected

Indicator Default
One
RSU

Two
RSUs

Three
RSUs

Mean time loss 74.9% 98.9% 98.3% 98.4%
Mean stoppage time 38.5% 96.8% 95.5% 95.9%
% vehicles affected — 44% 43% 48%
Vehicles >80% time loss 35.4% 74.7% 75.6% 74.7%
Vehicles >80% stoppage time 1.2% 74.7% 73.6% 74.2%
Vehicles >95% time loss 0 68.9% 70.5% 69.3%
Vehicles >95% stoppage time 0 56.7% 55.6% 57.2%
% vehicles unable to enter network 0 44.6% 46.3% 40.3%
# collisions 0 178 149 189

Fig. 13. Distributions of time losses and stoppage times for the disabling of brakes and forced sudden braking scenario with variations in number of
RSUs affected.
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Comparison of Risk Scenarios

Looking across the analysis outcomes, the potential consequences
for the risk scenarios vary widely. Some attacks cause significant
delays (e.g., forced sudden braking), while others cause a large
number of collisions (e.g., disabling of brakes), and others have no
effect (e.g., disabling of automated emergency braking). Combin-
ing multiple risk scenarios amplifies the potential negative impacts.
While the disabling of the emergency braking help feature did not
have an effect on its own, it led to worse outcomes across nearly all
of the indicators when combined with the sudden braking scenario.
The combined risk scenario outcomes were also worse than those
from the sudden braking scenario alone. These results show the
importance of analyzing the impacts of potential risk scenarios
individually, as well as in combination to capture potential com-
pounded effects across the network.

Analyzing the results across the variations for each scenario,
changing the range of the affected RSU has the largest effect on
the results. Increasing the number of RSUs affected in some cases
exacerbated the negative effects; however, the degree of impact de-
pended on the particular RSU affected, as seen in the fake environ-
mental hazard warning scenario. While this is difficult to generalize
to all possible risk scenarios, using the analysis methodology pre-
sented here provides important information for gaining a better
understanding of the cyber vulnerabilities at the intersection of
the telecommunications and traffic networks. Comparing results
across scenarios can facilitate prioritization of mitigation efforts
and help to decide, for example, whether it is more pressing to pre-
vent attackers from accessing multiple RSUs at once or to reduce
the radius of RSUs.

In comparing results across indicators, while some indicators
clearly show impacts that are more severe (e.g., collisions that af-
fect system safety compared to time loss as a measure of system
congestion and delays), others are not so straightforward (e.g., com-
paring the number of vehicles affected and mean time loss). Rather
than combining the indicators into a single severity score, this paper
provides quantitative assessments of the consequences of potential
risk scenarios in finer detail than previously possible and a range of
indicators that help users and stakeholders understand the types of
impacts for which to prepare.

Conclusion

As 5G technologies develop, it is critical to be able to rigorously
understand the risk landscape, particularly for critical infrastructure
systems and functions that are and will be dependent on 5G for
operations. This paper provides a methodology to provide quanti-
tative assessments of the impacts of 5G risks on dependent

connected transportation systems. The impacts of several likely cy-
bersecurity risk scenarios are investigated. The results of the risk
scenarios characterize the impacts of these risks on safety and ef-
ficiency in a traffic network. The indicators describing the vehicles
with time loss and stoppage time above 80% and 95% of their trip
times capture the vehicles severely impacted in the scenario. Col-
lisions measure significant safety impacts. These indicators provide
valuable information for system operators and managers to direct
resources toward appropriate mitigation efforts to minimize the
negative impacts of these potential risk scenarios.

The results show that even with a low level of automation and
connectivity, the integration of 5G technology into a smart trans-
portation system brings both safety concerns and the potential for
significant disruptions and delays to the vehicles traveling through
the network. Notably, these negative impacts are not limited to the
vehicles being directly affected, nor to only automated vehicles.
Unexpected trip delays and collisions occurred throughout the net-
work, the result of cascading effects across the network that impact
the entire system performance beyond just the vehicles directly
targeted.

Quantifying the impacts of these risk scenarios through the de-
fined indicators (time loss, stoppage time, number of collisions, and
vehicles affected) provides a more specific and detailed characteri-
zation of the severity of the effects of a cyberattack or malfunction
than has been previously studied. This allows for a better under-
standing of the impacts of risk scenarios, including distinguishing
between those that cause safety concerns compared to inconvenient
traffic delays, and characterizing the levels of impacts that might
be expected from an attack. Looking at effects across the network
enable us to understand the systemwide impacts of a given event.

The current approach is most useful for comparing the impacts
of the risk scenarios with one another and to better understand how
increasing certain parameters (e.g., RSU radius, number of vehicles
affected, etc.) exacerbates these negative effects. The model can be
easily modified to simulate a network in a different location or for
systems with a specific set of connectivity and automation features.
This flexibility makes it widely applicable for identifying and ana-
lyzing future risk scenarios that are of particular concern before
they occur and before the technology is even implemented. Such
an understanding will facilitate the development of mitigation
strategies to better prepare these critical systems for these scenarios
before they occur in a real-world setting.

Future Work

Because 5G and C-V2X technology is still in development, the risk
scenarios simulated were based off of risks identified by research-
ers and attacks seen in similar contexts. However, as specific risks
are identified throughout the rollout process, they can also be mod-
eled using the proposed methodology. Once C-V2X communica-
tions become more widely implemented and there are more data
available from surveys, sensors, and so on, the model can be com-
pared to real-world instances of these risk scenarios and further re-
fined. Multiple trials for each scenario can also be run with different
sets of random trips, different affected RSUs, and different levels of
traffic to gain a more in-depth understanding of a scenario. Once a
particular risk scenario of interest has been identified, a more ex-
tensive analysis like this can provide important information such as
why some RSUs have greater negative impacts than others when
affected. This can help identify system components that may be
bigger targets for cyberattacks so that any necessary extra security
measures can be put in place. Finally, future work in this area in-
volves adapting the simulation to reflect the continuing advances in

Table 13. Indicator values for the disabling of brakes and forced sudden
braking scenario with variations in number of RSUs affected

Indicator Default
One
RSU

Two
RSUs

Three
RSUs

Mean time loss 74.9% 96.9% 97.2% 96.8%
Mean stoppage time 38.5% 92.7% 93.5% 93.1%
% vehicles affected — 59% 62% 62%
Vehicles >80% time loss 35.4% 66.8% 69.3% 65.8%
Vehicles >80% stoppage time 1.2% 66.1% 67.1% 64.2%
Vehicles >95% time loss 0 59.2% 64.5% 59.3%
Vehicles >95% stoppage time 0 34.3% 37.9% 37.7%
% vehicles unable to enter network 0 16.6% 16.3% 11.8%
# collisions 0 398 382 415
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5G and C-V2X technology. As automated driving features are de-
veloped, they can be integrated into the simulation. As the 5G infra-
structure needed for C-V2X is deployed, this model can be used
to include those assets and functionality to simulate expanding
scenarios of interest.

Data Availability Statement

All data, models, and code that support the findings of this study
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