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Abstract: Characteristics at nodes in a network, such as values of demand, evolve over time. To make time-dependent decisions for a network,
making time series predictions at each node in the network over time is often necessary. Typical time series prediction approaches are based on
historical information. However, these fail to account for network-level factors that might affect nodal values. This paper proposes an approach
for the time series prediction in nodal networks that accounts for both time history information and nodal characteristics in the prediction. The
approach is based on recurrent neural networks and, in particular, gated recurrent units (GRU), creating a new GRU structure called a Pairwise-
GRU to include the influence of both historical data and neighboring node information to predict values at each node in the network. The result
is a more accurate and confident time series prediction. The performance of the proposed approach is tested using an electricity network in the
southeastern United States. The results indicate that the proposed Pairwise-GRU outperforms existing methods in terms of increased accuracy
and decreased uncertainty in the prediction. The approach performs particularly well for long-term, multiple-time-steps ahead predictions and
anomalous hazard conditions in addition to normal operating scenarios. DOI: 10.1061/AJRUA6.0001221. © 2022 American Society of Civil
Engineers.

Author keywords: Recurrent neural networks; Gated recurrent units (GRU); Time series prediction; Nodal networks; Data-driven
prediction; Predictions with uncertainty.

Introduction

Systems, including infrastructure systems, are often modeled as
nodal networks composed of nodes representing separate assets
or locations and links representing connections between them.
Because these networks operate and evolve over time, they are
characterized by time-varying values at the nodes. For example,
an electrical network is composed of nodes representing substa-
tions and links the connections between them, and values of elec-
tricity generation or consumption at the nodes indicate levels of
service for the system. Time series data capture these nodal char-
acteristics of the network to evaluate the continued operations and
evolution of the system over time. To facilitate time-dependent net-
work planning or scenario evaluation, making time series predic-
tions at each node in the network over time is desired. Typical time
series prediction approaches are based on historical information.
However, these fail to account for network-level factors that might
affect nodal values. For example, a hazard event could simultane-
ously affect varying areas of a network, or an emerging factor might
affect a subset of nodes in the network. In these cases, relying
solely on historical information does not fully capture the new
network characteristics for nodal time series predictions.

In this paper, a new method for time series prediction in nodal
networks is proposed. This prediction includes both the history
of the time series data and the interactions of a node with its neigh-
bors for the prediction. The approach is based on recurrent neural
networks (RNNs) and specifically gated recurrent units (GRUs).
To include the influence of both historical data and neighboring
nodes, a novel Pairwise-GRU approach is proposed. The definition
of neighboring nodes beyond physical connections is considered to
include measures of similarity between nodes. Assessing nodes by
similarity enables the approach to capture network-level effects that
influence the states of nodes beyond their physical connections.
The results indicate that including both historical and neighboring
nodal information within the proposed approach achieves more ac-
curate predictions with higher confidence compared with existing
approaches.

Background and Related Work

ARNN processes a temporal sequence through a directed graph. Its
applications include handwriting recognition, speech recognition,
and time series prediction. The simplest form of a RNN is indicated
in Fig. 1, in which inputs and outputs are connected by the hyper-
bolic tangent transformation. Xt is the input at time step t, Yt is the
output at time step t, and ht represents the hidden state information
at time step t. Note that the term time step is used throughout the
paper in the time series sense. When able to predict outputs based
on historical information, allowing previous outputs as inputs and
accounting for hidden states, the performance of naïve RNNs is
often limited by gradient vanishing and long-term recognition
because of the limited number of parameters (Li et al. 2018).

Thus, to avoid the long-term dependency problem and to accom-
modate lags between data points, particularly in time series predic-
tion problems, a Long Short-Term Memory network (LSTM) was
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developed (Hochreiter and Schmidhuber 1997). Compared with the
naïve RNN in Fig. 1, an additional layer of cell states, denoted asCt
in Fig. 2, is introduced. Ct is designed to preserve long-term infor-
mation. A typical LSTM network is indicated in Fig. 2. A LSTM
can be improved by reducing the number of parameters, facilitating
computational efficiency.

For improved computational efficiency, a variational form of
LSTM—GRUs—was introduced by Cho et al. (2014). The structure
of a GRU is indicated in Fig. 3. GRUs solve the long-term depend-
ency problem and gradient vanishing problem with fewer parame-
ters than LSTMs. As with the previous networks, GRUs feature a

chain-like structure. In Figs. 1–3, the complete naïve RNN, LSTM
RNN, and GRU are repetitions of Figs. 1–3, respectively, connect-
ing heads to tails as the system evolves from time step t − 1 to t.

In this paper, an approach based on GRUs is proposed. The fo-
cus is on the structure of the hidden units in the neural network. The
proposed Pairwise-GRU connects two GRUs with a transition box
in between. By doing so, the approach is able to account for the
effect of neighboring nodes in addition to the historical data in time
series prediction. The result is more accurate and more confident
predictions across the nodal network in a computationally efficient
manner.

The remainder of this paper is organized as follows. The next
section describes related work in time series prediction, including
limitations to existing approaches. Then, the proposed approach for
time series prediction in nodal networks that is based on GRUs,
called Pairwise-GRU, is described. The Pairwise-GRU approach is
then tested on a real-world application of an electricity network.
The performance of the proposed approach and the effects of in-
cluding neighboring nodes are analyzed. The impact of the type of
neighboring node information in terms of time gap to the prediction
time step is investigated in terms of both accuracy and uncertainty.
The contributions of this paper are then concluded.

Aside from RNN and its variational forms, many methods have
been proposed for time series prediction. Although not an exhaus-
tive description, the following describes major approaches to the
problem. The relevance vector machine (RVM) first proposed by
Tipping (2001) features sparse Bayesian learning. Similar to the
support vector machine (SVM), RVM has a kernel function, and the
parameter learning is based on Bayes’ rule. Using RVM, a multi-
scale relevance vector regression approach is proposed by Bai et al.
(2014) to forecast daily urban water demand. However, the perfor-
mance of RVM depends on the choice of bandwidth in the kernel
function, which might lead to overfitting problems. SVM can be ap-
plied to time series predictions as well. In Sapankevych and Sankar
(2009), SVM is applied in various scenarios, such as financial market
forecasting and control system processes. Due to the highly nonlin-
ear aspect of the data, similar to the RVM approach, the choice of a
kernel function largely influences the performance of the prediction.

The group method of data handling (GMDH) is a family of in-
ductive algorithms for modeling multiparametric datasets. GMDH
automatically generates model structures and performs parametric
optimization of models. The auto layer generation stops when a
preset criterion is met. In Nikolaev and Iba (2003) and Shelekhova
(1995), time series data are broken down into harmonic forms, in
which the harmonic model parameters are learned through GMDH.
Because no limitations exist on the number of layers that can be
generated, the overfitting problem exists in GMDH as well.

The idea of grey systems is described in Deng (1982) to address
the problem of incomplete information. In a grey system, part of
the system information is known, and part of the information is
unknown. With this definition, information quantity and quality
form a continuum from a total lack of information to complete
information—from black through grey to white. Applications of
grey system theory to time series prediction are found in forecasting
economic (Kayacan et al. 2010) and traffic volume (Xu and Zhang
2010) growth. However, when the underlying governing equation
fails to depict the growth rules, the prediction becomes unreliable.

For a multivariate time series prediction, Althelaya et al. (2018)
use RNN with unidirectional and bidirectional stacked structures to
perform stock market forecasting. The nodal network problem ad-
dressed in this study can be thought of as a multivariate time series
prediction problem, with predictions on the node of interest and the
neighboring nodes. In Wei et al. (2021), RNN is used for the time
series prediction on pore water pressure. The performances of RNN,

Fig. 1. Naïve RNN.

Xt Yt

Fig. 2. LSTM RNN.

Fig. 3. Gate recurrent unit (GRU).
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LSTM, and GRU are compared, with the authors finding that the
LSTM and GRU models provide more precise and robust predic-
tions than the standard RNN. Investigations are made into the struc-
ture of the hidden units in the RNN to improve the performance of
time series predictions. To mitigate the overfitting problem, a drop-
out technique following a Bernoulli distribution is used. In Hu and
Zheng (2019), additional operators are added to capture the short-
term dependencies in the dataset. However, in these studies, a net-
work of connected nodes and accompanying variables for prediction
is not considered. Existing structures of the hidden units in a RNN
cannot include the influence from neighboring nodes in the predic-
tion. Thus, this paper proposes a new Pairwise-GRU approach to
include the influence of neighboring nodes in the nodal prediction
for the nodal networks of interest in this study.

For RNN applications in the civil engineering area, in Wei et al.
(2021), a case study of pore water pressure prediction in the Hong
Kong area is conducted based on the GRU. A comparison over dif-
ferent activation forms of GRU is performed, including linear, hard
sigmoid, exponential, tanh, and others. However, for simplicity,
in Wei et al. (2021), two representative measurement stations are
selected from ten available installed piezometers, which exclude
the neighboring effects in making time series predictions. In the
Pairwise-GRU approach proposed in this paper, neighboring effects
are considered by connecting the two separate GRU networks. In
addition, predictions are made on all stations, enabling more com-
prehensive predictions over a system. In Jang et al. (2019), three
input variables (accounting, construction market, and macroeco-
nomic variables) are used to predict the business performance of a
construction company. Based on the performance results, the most
accurate prediction is given by considering all three variables as
inputs. The output of the model given by Jang (2019) is targeted at
predicting the success rate of a single construction project. In a more
general scenario of multiple ongoing construction projects, the pre-
diction model fails to include the dependencies between different
construction projects. The proposed Pairwise-GRU approach is not
limited to a single output and focuses on the challenge of capturing
the interaction between different output components. Likewise,
in Shahin (2014), the load-settlement response of a single drilled
shaft is predicted based on RNN. Because the RNN model given by
Shashin (2014) works on each pile individually, the prediction model
fails to consider the group pile effect. In the proposed Pairwise-GRU
approach, the influence between different target output components
is considered by the proposed RNN structure.

Finally, to address the gradient vanishing and explosion prob-
lem, another approach is to set a window size on the training data.
In Bai et al. (2014), the prediction of the daily urban water demand
is limited to a training window size of seven days (one week). The
selection of the size of the window is determined by the autocor-
relation and saturated correlation dimension methods (Holzfuss and
Mayer-Kress 1986). In Frank et al. (2001), time series prediction by
neural networks is applied to Lorenz data, voice traffic demand, and
tree ring data. Discussions are had on the selection of the size of
a sliding window. In that study, the optimal window size is chosen
by the false nearest neighbor method and singular-value analysis.
The test application in this paper performs time series prediction
based on hourly data of electricity consumption. The data indicate
a strong periodic characteristic of 24 h. Therefore, in the test ap-
plication part of this paper, a moving window size for prediction is
selected as 48 h, accounting for the nearest 48-h dataset. By doing
so, the periodic nature of the data is represented while account-
ing for some error between periods in consideration of both the
computational efficiency and the prediction performance.

Proposed Method

Target Network

The network of interest consists of nodes with time series data in-
formation at each node. The goal is to make a prediction at each
node based on the given historical data. To account for the influence
of neighboring nodes in the time series prediction, the Pairwise-
GRU approach is proposed.

Pairwise-GRU

The proposed method originates from the traditional GRU. The
structure of the proposed Pairwise-GRU is indicated in Fig. 4 and
consists of two separate GRUs connected by the box in the middle.
The connection ensures that one node can share information with
its neighboring node. By adding the middle box, the influence of
neighboring nodes is considered. Although the proposed Pairwise-
GRU connects two GRUs, it can be extended to include multiple
GRUs in the prediction. The choice will be a tradeoff between com-
putational cost and accuracy, with increased parameters if several
GRUs are involved. The pairwise structure is selected to demon-
strate the approach and is indicated to result in increased accuracy
with efficient computational times.

In Fig. 4, the upper script of the variables, that is, 1 in X1
t and 2 in

X2
t , refers to the first (1)/second (2) time series sequence. The upper

script also indicates the top/bottom GRU represented in a dashed

Fig. 4. Proposed Pairwise-GRU.
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box in Fig. 4. In each time series sequence, Y follows X. As indi-
cated in Fig. 4, the structure has one hidden layer and two hidden
neurons. The operation in the top/bottom dashed box follows the
rules given by the traditional GRU. The calculation process is as
follows:

z1t ¼ σðw1
z · ½h1t−1;X1

t �Þ ð1Þ

z2t ¼ σðw2
z · ½h2t−1;X2

t �Þ ð2Þ

ct ¼ σ½wc · ½h1t−1; h2t−1�� ð3Þ

r1t ¼ σðw1
r · ½h1t−1;X1

t �Þ ð4Þ

r2t ¼ σðw2
r · ½h2t−1;X2

t �Þ ð5Þ

~h1t ¼ tanhðw1 · ½r1t ⊗ h1t−1;X1
t �Þ ð6Þ

~h2t ¼ tanhðw2 · ½r2t ⊗ h2t−1;X2
t �Þ ð7Þ

h1t ¼ ð1 − z1t Þ ⊗ ð1 − ctÞ ⊗ h1t−1 þ z1t ⊗ ct ⊗ ~h1t ð8Þ

h2t ¼ ð1 − z2t Þ ⊗ ð1 − ctÞ ⊗ h2t−1 þ z2t ⊗ ct ⊗ ~h2t ð9Þ

Y1
t ¼ h1t ð10Þ

Y2
t ¼ h2t ð11Þ

Eqs. (1) and (2) refer to the update gates, denoted by z as the
update gate parameter. They deal with the historical information
from the collected dataset X and the hidden layer h and are the
prerequisite for determining the information to remember during
the processing. Eqs. (4) and (5) refer to the reset gates, denoted by
r as the reset gate parameter. They also consider the historical in-
formation from the collected dataset X and the hidden layer h and
are used to decide how much of the past information to forget in the
model processing. Eqs. (3), (6), and (7) combine the information
from the neighboring node, denoted by the parameters c and ~h.
Here, for simplicity, the sigmoid and one minus functions are used
to consider the neighboring effect. In Eqs. (1) to (7), w, wz, wc, and
wr are the weight matrices corresponding to h, z, c, and r, respec-
tively. All weight matrices are learned based on the details indicated
in the learning section of the process. Eqs. (8) to (11) are output
equations that calculate the predictions and hidden layer informa-
tion used for the next time step calculation.

Preprocessing

The performance of the prediction from the GRU depends on the
training data input. In practice, the GRU is found to perform better
when the input is monotonically increasing. This is due to the cal-
culation equations between each time step being monotonically in-
creasing, such as tanh and sigmoid, and the difficulty in curve fitting
the training set to learn the parameters if the input is oscillating or
varying heavily. Therefore, because parameter learning occurs over
multiple steps, a monotonically increasing input facilitates smoother
parameter learning and is more suitable for the multiple step ahead
prediction objective of this study. Additionally, for parameter learn-
ing, the more recent historical data are found to be more predictive
of future datapoints. Therefore, the more recent data are selected as
the training data for parameter learning and are used for the predic-
tion. A moving window size of 48 h is chosen, and the data series is
transformed into a normalized monotonically increasing data series

using Eq. (12). Due to the characteristics of the operators in Eqs. (1)
to (11), for example, tanh and sigmoid, the function varies between
–1 and 1. To efficiently train the parameters, the data are prepro-
cessed to be normalized between 0 and 1. Alternative normalization
approaches, such as the min-max scaling used in Hu and Zheng
(2019) or the min-max normalization to fit the ranges of the tanh
and sigmoid functions in Wei et al. (2021), can also be used to nor-
malize the original data. In Eq. (12), let the training data series be Xi

and the transformed data series be bXi, where i ¼ 1; 2; : : : ; 48. The
relation between bXi and Xi is established as

bXi ¼
Xi

aimaxðfXigÞ
ð12Þ

where maxðfXigÞ refers to the maximum element in set fXig, and
ai is a linearly decreasing scale factor ranging from 4.5 to 1.5.
Although not guaranteed, by this transformation, the original input
training time series data are likely to be transformed into a mono-
tonically increasing time series data ranging from 0 to 1.

Neighbor Definition

Neighbors in a network can be defined in numerous ways. For
example, neighbors can be defined through physical connections.
Alternatively, neighbors can be defined based on their characteris-
tics. Defining a neighboring node based on the similarity of its time
series data has been found to provide the best performance in terms
of both computational efficiency and prediction accuracy. Iglesias
and Kastner (2013) and Gonzalez-Abril et al. (2014) proposed
multiple methods to identify the distance (similarity) between
two sets of time series data.

The similarity measure adopted in this study quantifying the
similarity between sets of time series data uses the percentiles of
the data. For time series data X, let

QX ¼ fp1X; : : : ;pqXg ð13Þ
be a set of q percentiles of the dataset X in ascending order and
q ≥ 2. Intervals are defined as

IiX ¼ ðpiX;pðiþ1ÞX ð14Þ

with i ¼ 1; 2; 3; : : : ; q − 1.
The similarity score between two datasets A and B are then

denoted by KðA;BÞ defined as

KðA;BÞ ¼ 1

1þ 1
q−1

Pq−1
i¼1 dðIiA; IiBÞ

ð15Þ

where dðIiA; IiBÞ = Euclidean distance. A higher score results in
two datasets that are more similar. For two identical datasets, the
similarity score is 1. Using these definitions, if data series A is the
closest (most similar) one to data series B, then node A is defined as
the neighboring node of node B. A data-driven similarity-based ap-
proach is used here to facilitate the data-driven prediction. Alter-
native methods for defining neighbors in the network can also be
used based on the specific characteristics of the network of interest
if such information is available.

Learning

The loss function for the GRU is defined as the sum of the squared
errors. The efficiency of the learning depends on the initial values
set on the parameters. In the proposed approach, the learning pro-
cess is divided into two parts. First, the parameters for the two
traditional GRUs are learned separately. Then, the parameter values
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learned in the previous two separate GRUs are taken as the initial
values in the Pairwise-GRU. The learning process in the Pairwise-
GRU then finds the parameters minimizing the loss function. Let
the untransformed outcome value be Y̌i and the actual collected
data after transformation be bYi at time step i. Then, the loss function
L is defined as

Lðw;wz;wc;wrÞ ¼
X
i

fY̌iðw;wz;wc;wrÞ − bYig2 ð16Þ

Let the weight matrices prior to updating be w, wz, wc and wr.
Then, the weight matrices after updating denoted ~w,fwz, fwc, andfwr
are found as indicated in Eqs. (17) to (20). α is the defined learning
rate that is taken as 0.01 in the test application. For the test appli-
cation, gradient descent is used to optimize the parameters, the
training window size is 48 h, the batch size is 48, and the epoch
number is 1

~w ¼ w − αL=
∂L
∂w ð17Þ

fwz ¼ wz − αL=
∂L
∂wz

ð18Þ

fwc ¼ wc − αL=
∂L
∂wc

ð19Þ

fwr ¼ wr − αL=
∂L
∂wr

ð20Þ

Predicting

During the preprocessing, the original input data are transformed
into a monotonically increasing data series. Thus, once an out-
come is obtained, the transformation needs to be undone to re-
sult in the data series prediction. Let the untransformed outcome
be Y̌ and the final prediction be Ȳ. Then, the transformation from
Y̌ to Ȳ is

Ȳ ¼ Y̌ � ay �maxðfXigÞ ð21Þ

where ay = scale factor depending on the time step of the
prediction.

Testing and Evaluation

The performance of the proposed Pairwise-GRU is evaluated in
terms of two measures: accuracy and uncertainty. The accuracy
of the prediction, denoted pj, is evaluated by comparing the pre-
dicted value to the actual collected data value. Let the predicted

value be Yj and the actual collected data be Yj at time step j. Then,
the prediction accuracy at time step j is

pj ¼ 1−
����Yj − Yj

Yj

���� ð22Þ

The coefficient of variation (CoV) is used to measure the con-
fidence level or uncertainty in the predicted data. The CoV for a
prediction at time step j is determined by the performance of the
prediction, including uncertainty in the training set.

In summary, the workflow of the proposed Pairwise-GRU
method is as indicated in Fig. 5.

Test Application

Electricity Network

The electricity grid network in Florida is taken as the example net-
work for testing the proposed approach. Electricity consumption
data are collected on an hourly basis from 10 stations in August and
December of 2019. Each month has 744 consecutive time series
data points collected for each station (U.S. Energy Information
Administration 2020). This period is chosen to include data from
normal operating and hazard conditions, as well as data from differ-
ent seasons. The stations are connected, as indicated in Fig. 6. Each
station is treated as a node in the network, and the physical connec-
tions between the nodes are kept as links. The objective is to predict
the time series data for electricity consumption at each station using
just the historical time series information over the network without
information from any variables external to the network. Analyses for
this test application are completed on a 16 GB RAM computer in
MATLAB_R2017b.

Neighbor Identification

Based on the previous discussion, the closest (most similar) data-
sets are considered neighbors. Eqs. (13) to (15) are used to calculate
similarity scores based on the first 100 time series datapoints in
December. After comparing the similarities between all pairs, the
neighbors in this test application are defined as indicated in Table 1.
From the results in Table 1, the highest similarity score is not nec-
essarily associated with the closest physical connection. Station 7
(SEC-7) is most dissimilar to the other datasets. A neighbor is still
chosen for the Pairwise-GRU, and the method is able to provide
relatively accurate bounded prediction results by taking into ac-
count and learning weights between the historical data and neigh-
boring node information, as indicated in the results following.

Fig. 5. Workflow for building proposed Pairwise-GRU.
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Methods Comparison

To assess the performance of the proposed method, five time series
prediction methods (grey systems, RVM, GMDH, GRU, and the
proposed Pairwise-GRU) with a single variable input are compared.
Fig. 7 indicates the accuracy of the prediction across these methods
as a function of the number of steps ahead of the prediction. Pre-
dictions are made fromDecember 23 to 24 in the dataset. The results
for additional periods in the analyzed dataset are provided later in
this section. System-level accuracy is assessed as the average accu-
racy over all stations, with results indicated from one-step-ahead
prediction to 24-steps-ahead prediction, that is, one-hour-ahead to
one-day-ahead predictions. The multiple time steps ahead prediction
is achieved sequentially using the newly predicted values. For ex-
ample, for a two-steps-ahead prediction, a one-step-ahead prediction
is first generated. That prediction is then used generate a two-steps-
ahead prediction, and so on. Based on the results indicated in Fig. 7,

all methods perform relatively well for short-term predictions. How-
ever, for long-term predictions, the GRU and proposed Pairwise-
GRU approaches perform significantly better than the other three
methods. The proposed Pairwise-GRU approach indicates the high-
est accuracy, particularly for multiple time steps ahead predictions.

Performance: Accuracy and Uncertainty

Given GRU and Pairwise-GRU as the top performing methods, this
section performs a detailed comparison between the two approaches
under three cases, including both normal operating and hazard con-
ditions. All comparisons are made based on a three-step-ahead pre-
diction. Looking chronologically through the dataset, the three cases
for prediction are as follows: from August 21 to 22, as a dataset for
the system operating under normal conditions; from December 23 to
24, where a flooding hazard impacted node FPL-3 and node HST-10
[flooding information from the National Weather Service (2020)];
and from December 29 to 30, as a second dataset for normal oper-
ating conditions. The results comparing prediction performance us-
ing the GRU versus the proposed Pairwise-GRU are summarized in
Table 2. The GRU includes information only from the time history.
The proposed Pairwise-GRU takes into account both the time his-
tory and information from neighboring nodes. To further the com-
parison, the traditional GRU is analyzed under two scenarios: under
a single variable input scenario that separately processes information
for the ten stations, and under a multiple variables input scenario that
treats the entire network as a single unit and takes information across
the 10 stations at once as input.

In Table 2, performance is assessed in terms of prediction accu-
racy calculated by Eq. (16). System-level accuracy is indicated. Pre-
diction uncertainty is measured in terms of the CoV. From Table 2,
across normal operating and hazard conditions, the Pairwise-GRU
approach results in increased accuracy and decreased uncertainty
(CoV) in the prediction compared with the traditional GRU. Even
adding variables with the traditional GRU does not improve the re-
sults and, in fact, degrades them, as indicated with the multiple var-
iables analysis. The results indicate improved performance in terms
of both accuracy and CoV across all three periods, supporting the
generalizability of the performance results of the proposed method.
The findings suggest that by combining time history information
with neighboring node information, the proposed Pairwise-GRU
is able to more flexibly adapt to data and result in more accurate
time series predictions across both normal and anomalous data
conditions.

To provide a more detailed assessment of the time series pre-
diction performance at individual stations, Figs. 8–10 compare pre-
diction results from the GRU under a single variable input and
Pairwise-GRU at each node in the network. Bounds are obtained
based on CoVand indicated for a 95% confidence level following a
normal distribution for each station. The confidence level is obtained
through the performance of the training set, that is, with the window
size of 48 h and one realization or one run of the Pairwise-GRU to
obtain the confidence level. Assuming the prediction follows a nor-
mal distribution, the CoVof the training set is applied to the predic-
tions to find the upper and lower bounds. Alternate bounds can be
found based on different underlying distributions if desired as long
the distributions can be defined based on mean and standard devia-
tion values. The three periods considered in Figs. 8–10 are the same
as those investigated in Table 2. The upper (lower) bound 1 rep-
resents the results from the traditional GRU. The upper (lower)
bound 2 are the results from the proposed Pairwise-GRU. It can be
easily seen that a narrower bandwidth is achieved by the proposed
Pairwise-GRU approach for all stations and across all three predic-
tion periods. For the most part, the actual data lie within the 95%

Table 1. List of neighbors

Node of interest Neighboring node Similarity score

FMPP-1 TEC-5 0.9746
FPC-2 TEC-5 0.9759
FPL-3 TEC-5 0.9827
GVL-4 SOCO-8 0.9729
TEC-5 FPL-3 0.9827
JEA-6 TAL-9 0.9712
SEC-7 GVL-4 0.2120
SOCO-8 GVL-4 0.9729
TAL-9 JEA-6 0.9712
HST-10 SOCO-8 0.9691

Fig. 6. Network configuration.
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confidence bounds for the Pairwise-GRU. Even for station 7, which
had a low similarity score relative to the other nodes, as indicated in
Table 1, the predicted results using the Pairwise-GRU are improved
from the traditional GRU. This is because the Pairwise-GRU is able
to learn weights when considering the influence of the historical
data compared with the neighboring node information in the pre-
diction. The structure of the Pairwise-GRU given in Fig. 4 con-
siders both neighboring node and historical effects. The learning

weight matrices in Eqs. (1) to (11) determine the influence of both
factors. In the extreme case in which the neighboring matrix param-
eter is set as 0, the influence of the neighboring node will not be
included, and the same could occur for the historical data. In gen-
eral, the Pairwise-GRU will learn some non-zero weight for the two
factors, taking into account both historical data and neighboring
node information to result in more accurate and confident time
series predictions.

Fig. 7. Accuracy comparison across time series prediction methods.

Table 2. Accuracy and uncertainty performance comparison between GRU and proposed Pairwise-GRU methods

Condition Time range

History only (GRU)

Proposed (pairwise-GRU)Single variable Multiple variables

Average accuracy Average CoV Average accuracy Average CoV Average accuracy Average CoV

Normal August 21–22 94.61% 0.0690 90.02% 0.0773 97.20% 0.0495
Flood December 23–24 94.19% 0.0713 93.91% 0.0736 95.78% 0.0535
Normal December 29–30 92.89% 0.0727 90.40% 0.0866 95.83% 0.0653

Fig. 8. Prediction at each station under normal operating conditions (August 21–22).
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Effect of Neighboring Node Information

To more closely evaluate the effect of neighboring node informa-
tion on the prediction, this section investigates the influence of the
type of neighboring node information on the prediction in terms of
the time gap to the prediction time step. This is applicable for the
case in which the data collection among all stations is not synchron-
ized, or different nodes in the network have varying levels of in-
formation. Fig. 11 indicates the accuracy and uncertainty of the
prediction as the neighboring node information changes. For the
observation time gap indicated on the x-axis in Fig. 11, zero indi-
cates that the data collection is synchronized on the node of interest
and the neighboring node; that is, data are collected for the same
time step between the prediction and the neighboring nodes. A pos-
itive number on the x-axis, such as þ3, indicates that the data col-
lection on the neighboring node is three hours ahead of or three
hours more up to date than the node of interest. Similarly, a negative
number, such as −3, indicates that the data on the neighboring node

is three hours behind compared with the time step of the node of
interest. Fig. 11 indicates the prediction performance for a range of
time differences between the neighboring node and the node of in-
terest, from –6 to 6. For each observation time gap value, 100 points
are sampled across the system, including different stations and dif-
ferent periods. All sample points are plotted in Fig. 11 for accuracy
and CoV for three-hour ahead predictions, including median and 5
and 95 percentile values.

Fig. 11 makes it clear that the prediction improves when the
neighboring node offers more information that is more up to date.
The accuracy increases, and the uncertainty (CoV) decreases as
the neighboring node information becomes more up to date or even
ahead of the node of interest. The percentile curves also become
tighter, indicating decreasing variability in the results in terms of
both accuracy and uncertainty as the neighboring node data improve.

Finally, in terms of computational efficiency, Table 3 provides
the computational time required for the GRU compared with the

Fig. 9. Prediction at each station under flooding hazard conditions (December 23–24).

Fig. 10. Prediction at each station under normal operating conditions (December 29–30).
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Pairwise-GRU. At the cost of an increased time increment of shorter
than three seconds compared with the single variable input GRU
approach, the Pairwise-GRU offers a method to potentially in-
crease the accuracy and decrease the uncertainty of the time series
prediction.

Conclusion

This paper proposes a new recurrent neural network, called the
Pairwise-GRU, to perform time series predictions in nodal net-
works. Compared with the structure of a traditional GRU, a connec-
tion is implemented in which the influence of both historical data
and the information from neighboring nodes is considered in the
prediction. Despite the fact that double the parameters are involved
in the newly proposed RNN, the computational time is not signifi-
cantly increased with the initial value setting method for parameter
learning. Compared with existing methods, the proposed Pairwise-
GRU improves the accuracy and confidence level of the prediction.
These results are found across nodes in the network and across both
normal operating and hazard conditions. The proposed approach
works particularly well for multiple time steps ahead prediction.
The Pairwise-GRU is able to weigh the effects of the historical data
and neighboring node information, such that even if the neighbor-
ing node is not highly relevant to the node of interest, the result is
not largely influenced. The performance of the prediction in terms
of both accuracy and uncertainty improves significantly when
the neighboring node has up-to-date information. The proposed
Pairwise-GRU provides a way to take into account not only time

history information but also the nodal characteristics within a
network for time series prediction.

Data Availability Statement

All data, models, or code that support the findings of this study are
available from the corresponding author on reasonable request.
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