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Abstract: In reinforced concrete structures built before the 1970s, it was common for columns to be constructed with short lap splices and
widely spaced transverse bars at the column base, leading to increased likelihoods of pull-out failures and structural collapse during seismic
events. In the modeling and analysis of reinforced concrete columns with short lap splices, several challenges arise, particularly with
softening behavior that leads to strain localization and scaling and convergence issues in analyses. This research presents a methodology
to regularize force-based beam-column elements with softening lap-splice material response. In the methodology, a constant energy release
criterion is imposed with the constant postpeak energy of the lap-splice region determined from relevant experimental data. With the proposed
regularization, the numerical model shows objective results that are independent of the length of the element and number of integration points
used. Whereas the accuracy in estimating, for example, the displacement at 20% strength drop using existing nonregularized models changes
with the number of integration points, the accuracy using the proposed model remains constant across numbers of integration points used with
a mean accuracy of 94% compared with experimental tests. Results from static pushover and cyclic analyses show an order of magnitude
decrease in standard deviation of the response using the regularized model. Increased accuracy and increased convergence for the method
across the number of integration points used is shown in static and dynamic analyses. The proposed regularization approach is able to alleviate
strain localization issues and facilitates the scaling of analyses from small-scale to full-scale structures. DOI: 10.1061/(ASCE)EM.1943-
7889.0001778. © 2020 American Society of Civil Engineers.

Introduction

In older structures, including both buildings (Melek and Wallace
2004; Cho and Pincheira 2006) and highway bridges (Chail et al.
1991; Sun et al. 1993) built pre-1970s, it was common for rein-
forced concrete columns to consist of widely spaced transverse
reinforcement and short lap splices at the base of the column with
lap length of 20–24 times the longitudinal bar diameter. Structures
with short lap splices at the base have limited ductility and lateral
strength. These structures more likely to exhibit poor performance
under lateral loadings, and have an increased probability of suffer-
ing damage during seismic events. Damage includes potential
pull-out failures and even structural collapse.

To assess the performance of these structures, nonlinear analysis
is becoming common practice to predict and evaluate responses.
Having accurate and consistent numerical models is essential
to conduct these analyses and capture the failure mechanisms of
columns with short lap splices. However, existing approaches
are not objective due to the softening characteristic of the force-
transferring mechanism between the concrete and lap-splice bars.
In columns with short lap splices, behavior in the lap-splice region

governs column response, which in turn often governs overall
structural response. Therefore, objective models for these analyses,
including of the lap-spliced material, which are independent of the
number of integration points and do not suffer from length scale
issues are needed.

In the numerical modeling of reinforced concrete columns
presented in this paper, two elements are used with the bottom
element covering the length of the lap splice. Using two elements
rather than a single element enables the distribution of plasticity
along the lap-splice region to be captured. In the bottom element,
previous studies have suggested use of two integration points
(Tariverdilo et al. 2009), leading to numerical results that corre-
spond closely with experimental tests. However, as the length of a
specimen increases, including from lab-scale test specimens to full-
scale columns, increasing the number of integration points may be
desired to capture the behavior along the lap splice. Changing the
number of integration points leads to strain localization issues,
resulting in inaccurate element response outcomes from the model.
For example, the resulting element flexibility matrix and corre-
sponding stiffness matrix, as well as element rotational and axial
deformations, change based on the number of integration points
used, leading to inaccuracies in the analysis results.

In addition, results even with two integration points may be in-
accurate for some specimens, as shown subsequently in this study.
Therefore, there is the need for an approach that is able to obtain
accurate and consistent analysis results that are independent of the
length of the element and independent of the number of integration
points used. The proposed regularization approach results in objec-
tive numerical models. This study describes and evaluates the regu-
larization approach that uses a constant postpeak energy criterion
for reinforced concrete columns with short lap splices.

The rest of the paper is organized as follows. The next section
provides background and related studies motivating this work.
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The following section presents the formulation of the force-based
numerical element. The proposed regularization procedure for
the lap splice due to local softening behavior in tension is then pre-
sented. The modeling details for the columns analyzed using force-
based beam-column elements are provided. The next section shows
the results from using the proposed regularized compared to non-
regularized model. Results include verification of the numerical
model against experimental tests and convergence results for static
and dynamic analyses considering varying numbers of integration
points in the lap-splice region.

Background and Related Work

There have been several previous analytical studies of the nonlinear
response of columns with short lap splices (Reyes and Pincheira
1999; Cho and Pincheira 2006; Tariverdilo et al. 2009). Cho and
Pincheira (2006) proposed an analytical modeling approach using
nonlinear rotational springs at the element end to model the deg-
radation of stiffness and strength with increasing deformation am-
plitude. Even though the model is numerically efficient by taking
advantage of a concentrated plasticity modeling approach, it re-
quires the user to obtain the parameters to define the nonlinear rota-
tional springs from other sources, e.g., through experimental tests.
Tariverdilo et al. (2009) presented a model that is able to capture the
degrading response due to bar slip in the lap splice based on the
configuration and yield stress of the longitudinal reinforcement and
the spacing and amount of transverse reinforcement. The model
showed good correlation with results from experimental tests.
However, because the degrading mechanism in Tariverdilo et al.
(2009)’s model due to bar slip is manifested through the softening
stress-strain relation at the material level in the force-based beam-
column element, loss of objectivity due to strain localization has
become critical in the numerical modeling and analysis.

Previous studies (e.g., Tariverdilo et al. 2009) suggested the use
of two Gauss-Lobatto integration points within the lap-spliced
element to model the response of short lap splices regardless of the
length of the splice. The selection of two integration points is
ambiguous from a numerical standpoint because the integration
length of the lap-splice region could change as the length of the
element changes, for example, between a test specimen and full-
scale structural column. The assumption of using two integration
points can thus impact the accuracy of the numerical model in pre-
dicting the response of a real structural column subject to lap-splice
failure. The loss of objectivity has also been shown in other studies,
where the number of integration points used in the force-based
element dictates the response of the model at the location of soft-
ening constitutive behavior (Coleman and Spacone 2001; Addessi
and Ciampi 2007; Scott and Hamutçuoğlu 2008). The variation in
results with different numbers of integration points further leads to
accuracy and convergence issues in the analysis.

This paper presents a methodology to address the issue of strain
localization for columns with short lap splices through regulariza-
tion based on a constant postpeak energy criterion. Previous studies
have used the concept of constant fracture energy to address mesh-
sensitivity issues in displacement-based continuum finite-element
analyses due to the softening response for concrete in tension
(Bažant and Oh 1983; Bazant and Planas 1997). The concept of
a constant energy criterion has been extended to the softening re-
sponse in compression (Jansen and Shah 1997; Lee and William
1997). Several studies have investigated the issue of strain locali-
zation specifically for force-based frame elements (Coleman and
Spacone 2001; Addessi and Ciampi 2007; Scott and Hamutçuoğlu
2008). In particular, Coleman and Spacone (2001) showed that for

modeling a reinforced column with a single force-based element,
the force-displacement response loses its objectivity and varies
based on the number of integration points used. In the presence
of strain softening behavior of crushing concrete, strain rapidly in-
creases in the extreme fiber as the response proceeds in the post-
peak region. Despite these studies investigating strain localization
due to the nonlinear concrete response in compression, there is no
study delving into the localized phenomenon that occurs in rein-
forced concrete columns with short lap splices due to the bond slip
mechanism. This study alleviates strain localization effects through
regularizing the lap-splice material response. The numerical model
utilizing the proposed approach shows objective and accurate re-
sults compared with experimental values and consistent results that
converge across varying numbers of integration points.

Proposed Methodology

Formulation of Force-Based Element

Force-based elements described by Spacone et al. (1996a, b) have
been widely used by the structural engineering community for
nonlinear finite element analysis. Fig. 1 shows the force and
element deformation in the basic frame [Fig. 1(a)] and global frame
[Fig. 1(b)] (Filippou and Fenves 2004), where q, v and q̄, v̄ re-
present force and element deformation in the natural frame and
global frame, respectively.

Compared with displacement-based elements with interpolation
of the displacement field, force-based elements utilize the interpo-
lation functions bðxÞ of basic forces q within the basic system. The
product of interpolation functions and basic forces results in sec-
tional forces sðxÞ consisting of axial force and moment located at
distance x from one end of an element node. Under Euler-Bernoulli
beam theory, sectional deformation e consists of only axial strain
and curvature for the sectional response. In the absence of element
loading, Eq. (1a) shows the relation between basic element and
sectional forces

sðxÞ ¼ bðxÞq ð1aÞ

Eq. (1a) can be also expressed explicitly as in Eq. (1b)

�
NðxÞ
MðxÞ

�
¼

2
4 1 0 0

0
x
L
− 1

x
L

3
5
2
664
q1

q2

q3

3
775 ð1bÞ

Fig. 1. Degrees of freedom: (a) basic frame; and (b) global frame.
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where q1, q2, and q3 = axial force and end moments of the line
element; L = length of the element; and NðxÞ andMðxÞ = sectional
forces at distance x from one end of the element node. According to
the principle of virtual force, virtual sectional forces δs and sec-
tional deformation e can be related to virtual element basic forces
δq and element deformation v as shown in Eq. (2)

δqTv ¼
Z

L

0

δsðxÞTeðxÞdx ð2Þ

By considering Eq. (1a) in the virtual force system and Eq. (2),
Eq. (3) establishes the relation between element deformation v and
sectional deformation e

v ¼
Z

L

0

bðxÞTeðxÞdx ð3Þ

Element flexibility matrix fe is obtained by taking the derivative
of Eq. (3) with respect to basic forces q as shown in Eqs. (4a)
and (4b)

fe ¼
∂
∂q

Z
L

0

bðxÞTeðxÞdx ð4aÞ

fe ¼
Z

L

0

bðxÞT ∂eðxÞ∂s
∂s
∂q dx ð4bÞ

Element flexibility matrix fe is derived in terms of sectional
flexibility matrix fs and interpolation function bðxÞ as shown
in Eq. (5)

fe ¼
Z

L

0

bðxÞTfsbðxÞdx ð5Þ

Finally, element stiffness matrix ke is obtained by inversion of
the element flexibility matrix. The force formulation enables equi-
librium between sectional forces and element forces, and compat-
ibility between sectional deformation and element deformation is
satisfied in an integral sense.

Eqs. (3) and (5) are evaluated through numerical integration
according to Eqs. (6) and (7), respectively. The authors adopt
the Gauss-Lobatto integration scheme, which evaluates end points
of the structural element where the maximum moment occurs in the
absence of element loading

v ≅ XN
IP¼1

bðxIPÞTeðxIPÞLwIP ð6Þ

fe ≅
XN
IP¼1

bðxIPÞTfsbðxIPÞLwIP ð7Þ

where wIP and xIP = weight and position, respectively, for a par-
ticular integration point (IP). The domain for the integration weight
wIP is between 0 and 1; the domain for the position xIP is between 0
and element length L. The product of L and wIP is defined as LIP,
the length associated with an integration point. N is the total num-
ber of integration points along the element.

The element response is dependent on LIP, and the loss of
objectivity that this paper addresses arises when the number of in-
tegration points changes along each element in the presence of soft-
ening material response and when the length LIP changes. This
paper proposes to regularize the lap-splice material response
through a constant energy criterion. Specifically, the material
model for the lap-spliced section is modified based on a constant
postpeak energy value obtained from experimental tests and tied to

the element response through Eqs. (6) and (7) to regularize the
element response.

Regularization of Material Constitutive Model

The following two sections detail the regularization of the material
response for concrete in compression and the softening response of
a lap splice in tension. In a force-based beam-column model with
fiber sections, regularization of the material uniaxial response
deliberately increases the energy per length in the one-dimensional
(1D) constitutive relation as the number of integration points
increases along the element in order to achieve constant energy re-
lease. During the regularization process in this study, the regular-
ized strain is modified to a larger value as the number of integration
points increases in the lapped region. This artificial increase of
strain produces additional energy per length enclosed by the modi-
fied stress-strain curve at the material level. However, the total en-
ergy release remains constant due to the reduction of the integration
length. The regularization is implemented through adjusting the de-
grading slope after the peak stress. The increase of slope (i.e., hav-
ing a less negative degrading slope) creates additional sectional
stiffnessfks as shown in Eq. (8). As a result, the total sectional stiff-
ness fks increases, leading to a reduction of the sectional deforma-
tion e and sectional flexibility fs. Finally, the stabilization of the
element response is achieved through stabilizing the element defor-
mation v by adjusting the value of the sectional deformation e
based on Eq. (6)

cks ¼
Z

aTs

�c∂σ
∂ε

�
asdA ¼

Z
aTs

�∂σ
∂ε

�
asdAþ

Z
aTs

�f∂σ
∂ε

�
asdA

ð8aÞ

cks ¼ ks þfks ð8bÞ
where ∂σ=∂ε = original tangent material stiffness of the softening

portion; c∂σ=∂ε = regularized tangent material stiffness of the soft-

ening portion; c∂σ=∂ε = additional contribution of the tangent
material stiffness of the softening portion due to regularization;cks = regularized sectional stiffness; fks = additional contribution
to the sectional stiffness due to regularization; and as = sectional
kinematic matrix that describes the strain distribution in the local
coordinates.

Regularization of Concrete in Compression

The concept of constant fracture energy of concrete in compression
is defined as in Eq. (9) based on Coleman and Spacone (2001)

Gc
f ¼

Z
σdu ð9Þ

where Gc
f = fracture energy of concrete, where superscript c rep-

resents compression; and σ and u = stress and inelastic displace-
ment, respectively. The approach is adapted to a framework of
stress and strain by expressing the fracture energy as follows:

Gc
f ¼ h

Z
σdε ð10Þ

Gc
f ¼ LIP

Z
σdε ð11Þ

where h = length scale representing the size of a single element. For
a force-based element, h becomes the length associated with an

© ASCE 04020073-3 J. Eng. Mech.
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individual integration point at the presence of a softening response
(LIP). Fig. 2 shows the stress-stain relation and fracture energy in
compression. The regularization is applied to the Kent and Park
(1971) concrete model, and fracture energy of concrete is defined
from the peak compressive stress until the end of the softening
branch shown in the shaded area in Fig. 2, where f 0

c denotes the
compressive strength of unconfined concrete, EC is the elastic
modulus, εO is the strain corresponding to peak stress, and ε20u
is the strain corresponding to 20% f 0

c.
In order to implement the regularization process, the compres-

sive fracture energy of concrete needs to be estimated. The
authors refer to the few studies found in the literature to obtain this
estimate. From Coleman and Spacone (2001), the fracture energy
of plain concrete obtained from cylinder tests gives values of
20–30 N=mm. Due to the confining effect of steel hoops, the com-
pressive fracture energy of well-confined concrete increases to
about 180 N=mm, or six times that of unconfined concrete. Jansen
and Shah (1997) recommended the use of a value of 25 N=mm for
normal-weight concrete. Coleman and Spacone (2001) used this
same value for unconfined concrete and a value of 6Gc

f for a con-
fined concrete material. Due to the lack of literature regarding the
fracture energy for partially confined concrete, the current study
assumes that concrete is either unconfined for the concrete cover
with a fracture energy value of 25 N=mm, or well-confined for the
concrete core with a fracture energy value of 150 N=mm. Finally,
modification of the concrete material is done by adjusting the strain
ε20u to ensure constant energy release, resulting in Eq. (12)

ε20u ¼
Gc

f

0.6f 0
cLIP

− 0.8f 0
c

EC
þ εO ð12Þ

The regularization of concrete in tension is neglected in this
study because the concrete tensile response has minimal influence
on the softening behavior of the concrete section.

Regularization of Lap Splice in Tension

To approach regularization of the material behavior in the lap-splice
region, it is important to look at the constitutive material and failure
mechanism of lap splices. This study combines findings from sev-
eral previous studies to obtain the constitutive material model of
the splice. The mechanism transferring the tensile stress in the
splice relies on the concrete tensile stress capacity. The concrete
acts as an intermediate material that transfers forces between two
adjacent bars (Priestley et al. 1996). Splitting cracks along the
bar in concrete can be formed due to the stress-transferring mecha-
nism, which causes radially outward pressure on the concrete.
The cracking of the concrete in tension causes initiation of soften-
ing due to degrading behavior of the lap-spliced reinforcement

(Wight and MacGregor 2009). In addition to inadequate lap-splice
length, widely spaced transverse steel bars in the lap-splice region
further reduce ductility of the column response once cover concrete
has spalled.

To assess the stress-strain relation for lap splices, this paper uses
the relation proposed by Priestley et al. (1996) to obtain the value
of maximum force and stress developed in the lap-splice region, as
shown in Eqs. (13) and (14), respectively

Tb ¼ Abfs ¼ FtpLs ð13Þ

fs ¼
FtpLs

Ab
ð14Þ

where Tb and fs = force and stress developed in the lap-spliced bar,
respectively; Ab = cross-sectional area of longitudinal bar; Ft =
tensile strength of concrete; Ls = length of lap splice; and p =
perimeter of the cylindrical block, which is determined through
Eq. (15) with an upper limit for widely spaced spliced bars

p ¼ s
2
þ 2ðdb þ cÞ ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcþ dbÞ

p
ð15Þ

where s = average distance between spliced bars; db = diameter of
longitudinal steel bar; and c = thickness of concrete cover. Residual
stress fr is computed after the lap splice reaches its peak stress fs as
by Tariverdilo et al. (2009) and shown in Eq. (16)

fr ¼
n1ntμAhfs

nAb
ð16Þ

where n1 = number of transverse reinforcement legs perpendicular
to the crack plane; nt = number of transverse reinforcements in lap-
splice length; μ = frictional factor, which is taken as 1.4; Ah =
cross-sectional area of transverse reinforcement; and n = number
of spliced longitudinal bars developed by friction stress in the crack
plane. Slip corresponding to maximum stress is assumed to be 1 mm
and slip corresponding to reaching frictional stress is 10 mm
as in Tariverdilo et al. (2009). As a result, residual strain εr is
set to be 0.022 and peak strain εs can be obtained from Eq. (17)

εs ¼
fs
Es

þΔBarSlip

lss
ð17Þ

where Es = elastic modulus of steel bar; ΔBarSlip at peak stress is
taken as 1 mm; and lss = length in which displacement due to slip
occurs and is taken as section depth. The compression side of the
reinforcement is assumed to follow perfectly plastic behavior. Based
on Eqs. (13)–(17), the stress-strain curve is illustrated in Fig. 3.

To obtain the postpeak energy value, this study considers six
experimental specimens from Melek and Wallace (2004) and
Aboutaha et al. (1996). These column specimens consist of either
square or rectangular cross-sections and lap-splice lengths of 20 ×
db or 24 × db. Column geometries and material properties are listed
in Tables 1 and 2, respectively.

Fig. 4 shows the formulation for regularizing the tensile lap-
splice response. From Fig. 4, the constant postpeak energy of the
lap-splice region in tension is computed based on the total shaded
area as shown in Eq. (18)

GT
LS ¼ LIP

Z
εult

εs

σdε ð18Þ

where superscript T = tension; and subscript LS = lap splice. GT
LS

consists of two portions as indicated in Fig. 4. The two portions are
calculated according to Eqs. (19) and (20)

Fig. 2. Regularized compressive concrete response.
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GT
LS1 ¼

1

2
ðεr − εsÞðfs þ frÞLIP ð19Þ

GT
LS2 ¼ ðεult − εrÞfrLIP ð20Þ

where εult = ultimate strain of the lap-splice section with the value
taken to be 0.08.

The other parameters needed to calculate the postpeak energy
are computed based on the material stress-strain relations of
Tariverdilo et al. (2009). The resulting parameter values are shown
in Table 3. Tariverdilo et al. (2009) took two Gauss-Labatto inte-
gration points at the lap section to result in sufficient accuracy com-
pared with experimental results. Therefore, the integration length
LIP is set equal to half of the lap-splice length. The resulting post-
peak energiesGT

LS1 andG
T
LS2 calculated for each specimen based on

the proposed Eqs. (19) and (20) are given in Table 3.
Themeanvalues forGT

LS1 andG
T
LS2 are calculated over the six lap-

splice column specimens as 1,258 and 1,886 N=mm, respectively.

These values are used to obtain the regularized residual strain (eεr)
and regularized ultimate strain (fεult) as shown in Eqs. (21) and (22)

eεr ¼ GT
LS1

LIP

2

fs þ fr
þ εs ð21Þ

fεult ¼ GT
LS2

LIPfr
þ eεr ð22Þ

where GT
LS1 and GT

LS2 = average values of postpeak energy for short
lap splices.

For Eqs. (21) and (22), the regularized residual strain is deter-
mined first based on the average value of GT

LS1. The regularized
ultimate strain is then obtained by adding the strain contribution
based on the average value of GT

LS2. Fig. 5 shows regularized
stress-strain curves of a lap splice in tension considering varying
numbers of integration points with constant postpeak energy. Here,gεr 2IP, gεr 3IP, and gεr 4IP represent regularized residual strains with
two, three, and four integration points along the element, respec-
tively. Likewise, gεult 2IP, gεult 3IP, and gεult 4IP represent regularized
ultimate strains with two, three, and four integration points along
the element, respectively.

Modeling Details

To evaluate the proposed regularization approach to model the lap-
splice material response, the authors build a numerical column
model simulating lap-splice failure. The finite-element model of
the reinforced concrete column with lap splice at the base consists
of two force-based beam-column elements with fiber discretization
connected in series. The deformation of the lapped region due to
bar slip and column flexural behavior is captured by the bottom
element with a length set equal to the actual length of splice;
the flexural behavior of the remaining portion of the column is cap-
tured by the top element. The model is implemented in the finite-
element platform OPENSEES version 3.2.0 (McKenna 1997).

Fig. 3. Constitutive material model of lap-spliced bar.

Table 1. Experimental column specimen geometries and axial load ratios

Specimen

Column dimensions

Shear span
ratio

Axial load
ratio

Width
(mm)

Depth
(mm)

Height
(mm)

FC4 914 457 2,743 3.00 0
FC14 686 457 2,743 4.00 0
FC15 457 457 2,743 6.00 0
S10MI 457 457 1,829 4.00 0.10
S20MI 457 457 1,829 4.00 0.20
S30MI 457 457 1,829 4.00 0.30

Table 2. Experimental column specimen material properties

Specimen

Longitudinal reinforcement Transverse reinforcement

Concrete compressive
strength (MPa)No.

Lap-splice
length (db)

Yield strength
(MPa)

Spacing
(mm)

Yield strength
(MPa)

FC4 16#8 24 434 #3@406 400 19.7
FC14 12#8 24 434 #3@406 400 28.8
FC15 8#8 24 434 #3@406 400 28.8
S10MI 8#8 20 510 #3@305 476 36.3
S20MI 8#8 20 510 #3@305 476 36.3
S30MI 8#8 20 510 #3@305 476 36.3

Fig. 4. Regularized tensile lap-splice response.
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The uniaxial stress-strain relation of the longitudinal reinforce-
ment in the lap-splice region adopts the stress-strain curve shown in
Fig. 3. It is implemented by using material model Hysteretic in
OPENSEES, which is capable of modeling the trilinear stress-strain
relation depicted in Fig. 3. The ultimate tensile strain of lap splices
is implemented through material model MinMax in OPENSEES.
The longitudinal reinforcement in the top element uses a steel
element with material model Steel01 in OPENSEES, which con-
sists of bilinear behavior with kinematic hardening. Yield strength
and ultimate strength are based on the material properties of each

specimen. For the concrete material, the model from Yassin (1994)
is adopted, which is implemented as Concrete02 in OPENSEES.
From Yassin (1994), the model from Hognestad (1951) is used
for prepeak behavior. The stress-strain curve between the concrete
compressive strength and crushing strength is assumed to be linear,
with the crushing strength assumed to be 20% of maximum com-
pressive strength. The initial slope for the concrete model is 2f 0

c=εo,
where f 0

c and εo are concrete compressive strength and concrete
strain at maximum strength, respectively.

The unloading path from the compression envelope and tension
envelope is bilinear and linear, respectively. The reloading path is
assumed to be linear. Compressive strength is defined according to
the material properties of each specimen, and the concrete modulus
is computed based on ACI (2011). For the confined concrete
model, the same uniaxial material model Concrete02 is adopted.
However, the maximum confined concrete stress and its corre-
sponding strain are computed based on Mander et al. (1988). Fig. 6
shows the 1D constitutive models used for the steel and concrete
materials.

The proposed regularization process for the material response
is implemented for the described numerical model. As shown in
Fig. 7, the top element of the column model has three Gauss-
Lobatto integration points; the bottom element has two integration
points. LsIP indicates the integration length of the lapped region,
and Lupper is the length of the upper element excluding the lapped
region. The number of integration points in the bottom element is
varied in the next section to investigate objectivity of the results
with and without using the regularized concrete and lap-splice
material models.

Theoretically, the proposed regularized strains should apply to
each integration point. However, because the plastic hinge region is
typically at the end of the element, the regularization is applied only
to the extreme integration point in this paper. Implementing the
regularization at the other integration points does not significantly
affect the results.

Evaluation of Results with Proposed Regularization

In this section, the authors present results for five column speci-
mens with short lap splices. Summary results in terms of estimating
the displacement at 20% strength drop for the five specimens using
a regularized compared with a nonregularized model and compared
with experimental tests are presented to demonstrate generalizabil-
ity and utility of the proposed approach. Detailed results are then

Table 3. Material parameters and resulting postpeak energy

Specimen fs=fy fr=fy εs εr
GT

LS1
(N=mm)

GT
LS2

(N=mm)

FC4 0.79 0.25 0.0039 0.022 1,246 1,920
FC14 0.95 0.26 0.0043 0.022 1,418 1,997
FC15 0.95 0.20 0.0042 0.022 1,348 1,536
S10MI 0.78 0.26 0.0042 0.022 1,195 1,954
S20MI 0.78 0.26 0.0042 0.022 1,195 1,954
S30MI 0.78 0.26 0.0042 0.022 1,195 1,954
Mean postpeak energy (N=mm) 1,258 1,886

Fig. 5. Regularized constitutive relation of lap-splice response with
varying numbers of integration points.

Fig. 6. One-dimensional constitutive models used for (a) steel material; and (b) concrete material.

© ASCE 04020073-6 J. Eng. Mech.
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described for two out of the five specimens, with the figures for
the remaining specimens provided in the Appendix for concision.
In the analyses, the goal is to evaluate objectivity of the proposed
regularization approach across integration points and verify the
accuracy of the regularized model compared with experimental
tests. Results for pushover, static cyclic, and dynamic analyses are
presented.

Descriptions of Test Specimens

Five test specimens are selected for evaluation of the proposed
regularization approach. These specimens are chosen due to the
availability of experimental test data for comparison. Tables 4
and 5 provide the geometries, axial load ratios, and material proper-
ties of each specimen. The test specimens consist of rectangular,
square, and circular cross sections. Specimen 1 and Specimen 2
are from Sun et al. (1993) and Chail et al. (1991), respectively.
Specimen 3 and Specimen 4 are from Jaradat et al. (1998), with
Specimen 3 corresponding to Specimen T1 and Specimen 4 corre-
sponding to T2 in the study. Specimen 5 is fromMelek and Wallace
(2004), corresponding to Specimen 2S20H. The specimens have

a lap-splice length of 20 times the longitudinal bar diameter. Trans-
verse reinforcement of the specimens is widely spaced with average
ratio of 0.2%. The shear span ratios of greater than 3.5 for all spec-
imens ensures sufficient shear strength at the base of the column
such that lap-splice failures will result.

Summary of Results for Test Specimens

Fig. 8 provides a summary of the accuracy of the regularized model
compared with the nonregularized model in terms of normalized
displacement at 20% strength drop for different numbers of inte-
gration points used in the analysis. Fig. 8(a) shows the results
for all five test specimens. The normalization is computed as the
ratio between the numerical and experimental results to assess ac-
curacy of the model compared with experimental tests. Fig. 8(b)
provides the mean values over the five specimens. The results show
that the accuracy of the nonregularized model heavily depends on
the number of integration points, with poor accuracy when the
number of integration points exceeds two, as may be desired for
longer specimen lengths. The nonregularized models show less
than 50% accuracy once three or more integration points are used

Fig. 7. Modeling details of numerical model.

Table 4. Experimental column specimen geometries and axial load ratios

Specimen References

Column dimensions

Shear span
ratio

Axial load
ratio

Width
(mm)

Depth
(mm)

Height
(mm)

1 Sun et al. (1993) 1,830 1,220 9,140 4.99 0.15
2 Chail et al. (1991) 610a — 3,660 6.00 0.18
3 T1 of Jaradat et al. (1998) 250a — 1,780 3.56 0.05
4 T2 of Jaradat et al. (1998) 250a — 1,780 3.56 0.05
5 2S20H of Melek and Wallace (2004) 457 457 1,676 3.67 0.20
aCircular cross section.

© ASCE 04020073-7 J. Eng. Mech.
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in the lapped region. This decrease in accuracy is typical when
existing approaches are used. In comparison, the accuracy from us-
ing the regularized models remains constant regardless of the num-
ber of integration points. The mean accuracy of the response using
the regularized model is 94% compared with the experimental tests.

The following sections provide detailed results for two speci-
mens, Specimen 1 and Specimen 2 from Table 4. Figures for the
other specimens are provided in the Appendix. Specimen 1 is from
Sun et al. (1993), which is designed based on a prototype rectan-
gular column with dimensions of 1.83, 1.22, and 9.14 m for section
depth, section width, and column height, respectively. The actual
test specimen uses a scale factor of 40% of the prototype, which
results in a 730 × 489 mm cross section and 3.66 m column height.
The column consists of 32 M22 (No. 6) longitudinal bars and
6.4 mm (No. 2) transverse reinforcement with spacing at 127 mm.
The cover concrete is 19mm, and an axial load of 1,780 kN is applied
to the column at the top resulting in an axial load ratio of 15%. The
concrete compressive strength is 33 MPa; the yield strength and ulti-
mate strength of the longitudinal steel are 317 and 476 MPa, respec-
tively. Lap splices at the base have a length of 381 mm, which is
around 20 times the longitudinal bar diameter.

Specimen 2 is from Chail et al. (1991). The test specimen has a
circular cross section with a diameter of 610 mm and height of
3.66 m. The longitudinal reinforcement consists of 26 No. 6 steel
bars, and the transverse reinforcement consists of No. 2 bars at
127 mm spacing. The cover concrete is 20 mm, and an axial load
of 2,758 kN is applied to the column at the top resulting in an axial

load ratio of 17.7%. The concrete compressive strength is 34 MPa;
the yield strength and ultimate strength of the longitudinal steel are
315 and 498 MPa, respectively. Lap splices at the base have a length
of 381 mm, which is around 20 times the longitudinal bar diameter.

Static Pushover Analysis: Nonregularized versus
Regularized Model

To assess the nonlinear behavior of the specimens, pushover
analyses with a displacement control strategy are performed in
OPENSEES. The parameters that are considered for comparison
include the number of Gauss integration points in the lap-splice
region both with and without implementing the proposed regular-
ized lap-splice material model. Pushover results for Specimen 1 and
Specimen 2 are shown in Figs. 9(a and b) and 9(c and d), respec-
tively, with applied maximum drift ratio of 2% in both cases.

Figs. 9(a and c) show the pushover curves without implement-
ing the proposed regularized material model. The analyses in the
lap-splice region exhibit different levels of premature degrading
behavior depending of the number of IPs due to strain localization
beginning at 0.8% and 0.6% drift ratio for Specimen 1 and Speci-
men 2, respectively. The analysis results thus highly depend on the
number of integration points used by the analyst. However, if regu-
larization is applied to both the concrete and lap-splice constitutive
material models, convergent and objective structural responses are
observed. Table 6 provides the drift ratios at 20% drop of lateral
strength between the regularized and nonregularized models for
the two specimens.
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Fig. 8. Normalized displacement at 20% strength drop versus number of integration points between regularized and nonregularized models: (a) all
five test specimens; and (b) mean values.

Table 5. Experimental column specimen material properties

Specimen

Longitudinal reinforcement Transverse reinforcement

Concrete compressive
strength (MPa)No.

Lap-splice
length (db)

Yield strength
(MPa)

Spacing
(mm)

Yield strength
(MPa)

1 32#6 20 317 #2 @ 127 276 33.0
2 26#6 20 315 #2 @ 127 350 34.0
3 8#4 20 360 9 gauge @ 98a 210 29.0
4 8#3 20 350 9 gauge @ 98a 210 29.0
5 8#8 20 510 #3 @ 305 476 36.3
a9-gauge steel with diameter of 3.8 mm.

© ASCE 04020073-8 J. Eng. Mech.
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Table 6 quantifies the difference between the results obtained
from using the nonregularized compared with regularized models
in terms of drift ratio at 20% strength drop as the number of
integration points varies. The nonregularized results show large

variation in drift ratio depending on the number of integration
points used. In contrast, results indicate that the regularized model
is able to eliminate the issue of premature degrading due to strain
localization, reducing the standard deviation of drift ratio at 20%
strength drop from 0.18% and 0.12% to 0.02% and 0.02% for the
two specimens, respectively. The decrease in standard deviation of
the response combined with the results shown in Figs. 9(b and d)
indicate that the regularization alleviates the issue of convergence.
The pushover curves become objective with results independent of
the number of integration points used.

Static Cyclic Analysis: Nonregularized versus
Regularized Model

Cyclic loadings are also applied to assess performance of the
regularized compared with nonregularized models. A lateral dis-
placement cycle of prescribed magnitude is imposed at the top
of the column node using the displacement control integrator in
OPENSEES. The numerical models are subjected to the same dis-
placement pattern of increasing magnitude in accordance with

Fig. 9. Static pushover curves for varying numbers of integration points in the lap-splice region: (a and c) nonregularized responses; and (b and
d) regularized responses.

Table 6. Pushover values for test specimens using nonregularized versus
regularized models

Number of
integration
points

Drift ratio at 20% strength drop (%)

Specimen 1 Specimen 2

Nonregularized
model

Regularized
model

Nonregularized
model

Regularized
model

2 1.22 1.65 0.85 1.25
3 0.85 1.60 — 1.21
4 0.80 1.59 0.59 1.20
5 0.80 1.59 0.59 1.20
Mean 0.92 1.61 0.68 1.22
Standard
deviation

0.18 0.02 0.12 0.02

Note: Dash indicates analysis fails to converge.

© ASCE 04020073-9 J. Eng. Mech.
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the experimental tests. The study uses an adaptive strategy, which
tries multiple solution algorithms, including Newton-Raphson,
modified Newton-Raphson, Newton with linear search, and so on,
before it fails to converge. The resulting static cyclic curves are
shown in Fig. 10 for both specimens with and without considering
regularization. The results from Specimen 1 and Specimen 2 are
shown in Figs. 10(a and b) and 10(c and d), respectively.

Figs. 10(a and c) show the static cyclic curves for the two
specimens when different numbers of integration points are used

without regularization. Both cases show that the results vary based
on the number of integration points in the model. The analyses
using more integration points degrade faster, and the issue of con-
vergence persists due to the decrease of integration weight as the
number of integration points along bottom the element increases.
The difference in integration weight leads to variations in the
element deformation v during element-state determination. Without
the regularization, the results become nonobjective because they
depend on the number of integration points used by the analyst.

Fig. 10. Static cyclic curves of (a and c) nonregularized responses; and (b and d) regularized responses.

Table 7. Static cyclic values for Specimen 1

Number of
integration
points

Nonregularized model Regularized model

Peak
strength
(kN)

Displacement
at 20% strength

drop (mm)

Peak
strength
(kN)

Displacement
at 20% strength

drop (mm)

2 216 63 216 62
3 208 43 210 61
4 203 31 215 61
5 195 28 216 61
Mean 206 41 214 61
Standard
deviation

7.63 13.75 2.49 0.43

Table 8. Static cyclic values for Specimen 2

Number of
integration
points

Nonregularized model Regularized model

Peak
strength
(kN)

Displacement
at 20% strength

drop (mm)

Peak
strength
(kN)

Displacement
at 20% strength

drop (mm)

2 308 31 315 44
3 286 20 322 43
4 280 17 324 43
5 280 17 325 44
Mean 289 21 322 44
Standard
deviation

11.52 5.76 3.91 0.50

© ASCE 04020073-10 J. Eng. Mech.
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In comparison, Figs. 10(b and d) show that the static cyclic curves
from using the regularized model for both specimens are free from
the strain localization and convergence issues. The results are con-
sistent across varying numbers of integration points and converge
in all cases.

Tables 7 and 8 quantify the differences between the regularized
and nonregularized models across different integration points for

Specimen 1 and Specimen 2, respectively. Results for the peak
strength and displacement at 20% strength drop are shown. For
both response parameters and both specimens, the nonregularized
model leads to results with greater variation as a function of the
number of integration points. The variability is significantly re-
duced by using the regularized model. The standard deviations of
displacements at 20% strength drop are reduced from 13.75 to
0.43 mm, and from 5.76 to 0.50 mm. The reduction in variation
of the response further demonstrates the numerical consistency be-
tween the results from using different numbers of integration points
for the regularized model.

Verification with Experimental Test Results

The static pushover and cyclic analyses show that the model with
regularization results in objective global force-displacement re-
sponses. In this section, the authors verify the accuracy of the
proposed regularized model against experimental test results.
Figs. 11(a and b) show the comparison between the responses from

Fig. 11. Experimental test results compared with regularized numerical model results: (a) Specimen 1; and (b) Specimen 2.

Table 9. Comparison between experimental tests and regularized model
results

Models and
difference

Specimen 1 Specimen 2

Peak
strength

Displacement
at 20% strength

drop
Peak

strength

Displacement
at 20% strength

drop

Experimental test 218 kN 60 mm 300 kN 37 mm
Regularized model 214 kN 61 mm 322 kN 43 mm
Difference (%) 1.83 1.67 7.33 16.22
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Fig. 12. (a) Response spectra of selected ground motions; and (b) time history of GM 1.
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the experimental tests and from the regularized numerical model for
Specimen 1 and Specimen 2, respectively. Both specimens have
bond-slip failure in the lap-splice region. From Fig. 11, the regu-
larized models are able to model the strength, softening slope, and
degrading stiffness in comparison with experimental tests.

Table 9 provides the percentage differences between the exper-
imental tests and regularized model results in terms of peak force
and displacement at 20% strength drop. The percentage differences
are below 10%, except for the displacement quantity for Specimen
2 with around 16% difference. This discrepancy could be caused by
measurement error of the experimental test or modeling error in
terms of accuracy of the fiber uniaxial behavior and damage param-
eters accounting for pinching behavior (Zhang et al. 2019). In an
overall sense, the regularized model is able to capture the force-
displacement envelope of the lap-splice columns.

In addition to the summary of results for the five test specimens
provided in Fig. 8, the figures showing the detailed results from the

static cyclic analyses comparing the regularized and nonregular-
ized models as well as the verification between the experimental
tests and regularized model results for the remaining three speci-
mens are presented in the Appendix. The results for these three

Fig. 13. Details of dynamic simulation of the test specimen.

Fig. 14. Time history of column displacement: (a) nonregularized model; and (b) regularized model under GM 1.

Table 10. Maximum drift ratios from nonregularized models

Nonregularized
model 2 IP (%) 3 IP (%) 4 IP (%) 5 IP (%) Mean (%)

GM1 3.97 — — — 3.97
GM2 4.24 — — — 4.24
GM3 — — — — —
GM4 6.50 — — — 6.50
GM5 8.93 — — — 8.93

Note: Dash indicates analysis fails to converge.
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specimens are similar to those presented for Specimen 1 and 2 and
serve to further demonstrate the accuracy and objectivity of the
results obtained from implementing the proposed methodology
of regularization.

Dynamic Analysis: Nonregularized versus Regularized
Model

This section evaluates the structural responses from the regular-
ized compared with nonregularized models under dynamic
loading. It investigates the convergence and objectivity of the dis-
placement response with varying numbers of integration points in
the lap-splice section. The first five ground motions from the
SAC (a joint venture of the Structural Engineers Association of
California, Applied Technology Council, and Consortium of Uni-
versities for Research in Earthquake Engineering) ground motion
suite (Somerville et al. 1997) have been selected for this study.
The response spectra of these ground motions are shown in Fig. 12
(a); as an example, the time history of the first ground motion
(GM 1) is shown in Fig. 12(b). Fig. 13 shows the details of the
physical system and the idealized system of the structural column.

Table 11. Maximum drift ratios from regularized models

Regularized
model 2 IP (%) 3 IP (%) 4 IP (%) 5 IP (%) Mean (%)

Standard
deviation

(%)

GM1 2.60 2.37 2.30 2.24 2.38 0.16
GM2 4.74 — 4.28 3.87 4.30 0.44
GM3 — 4.95 4.59 4.91 4.82 0.20
GM4 6.61 6.64 6.70 — 6.65 0.05
GM5 7.86 7.07 6.97 6.85 7.19 0.46

Fig. 15. (a, c, and e) Nonregularized responses; and (b, d, and f) regularized responses of Specimens 3, 4, and 5, respectively.
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The structural parameters are based on those of Specimen 1.
Ground excitations are applied at the base of the column.

The time history of the column tip displacement under GM 1
for the nonregularized and regularized models are shown in
Figs. 14(a and b), respectively.

From Fig. 14, except for the case with two integration points in
the lap-splice region, the model without considering regularization
fails to converge when more than two integration points are used,
and analyses halt at around 6 s due convergence issues. In compari-
son, the numerical model with the proposed regularization imple-
mented has improved performance with regards to convergence,
and the displacement response histories are similar regardless of
the number of integration points used.

Tables 10 and 11 provide the maximum drift ratios of the nonre-
gularized and regularized models with varying numbers of integration
points in the lap-splice region under each of the five ground motions.
In Table 10, it is clear that the model without considering regulari-
zation exhibits poor convergence performance when the number of
integration points exceeds two in the lap-splice region. In comparison,
Table 11 indicates the issue of convergence is alleviated through use
of the regularized models. Although there are still cases when the
analysis does not converge, most cases run successfully. Moreover,
the resulting maximum drift ratios calculated from the analyses are
consistent as the number of integration points changes. The average
coefficient of variation of maximum drift ratio under varying numbers
of integration points for these five ground motions is 5.58%.

Conclusions and Summary

This paper has proposed a methodology to regularize force-based
beam-column elements for reinforced concrete columns with

short lap splices at the column base. The regularization process uses
a constant energy criterion to impose an extra constraint in the
material uniaxial behavior, stabilizing element end deformation
and element stiffness and tying material response directly to
element response. Regularizing the material behavior based on a
constant energy release criterion provides additional sectional stiff-
ness that reduces both sectional deformation and section flexibility.
The proposed postpeak energy of the lap-splice region is deter-
mined according to six experimental tests resulting in average

values of 1,258 and 1,886 N=mm for GT
LS1 and GT

LS2, respectively.

The regularized residual strain is then computed based onGT
LS1, and

the regularized ultimate strain determined based on the value of

regularized residual strain and GT
LS2.

The authors applied the proposed regularized constitutive
material model in numerical reinforced concrete column models
to evaluate performance compared with nonregularized models.
Results using the nonregularized model heavily depend on the
number of integration points used by the analyst. In contrast,
the regularized model is able to obtain objective force-displacement
results across varying numbers of integration points used, with an
order of magnitude decrease in standard deviation of the response
compared with the nonregularized model. In estimating the dis-
placements at 20% strength drop, the nonregularized models show
decreased accuracy compared with experimental results as the
number of integration points changes, with less than 50% accuracy
once three or more integration points are used in the lapped region.
This decrease in accuracy is characteristic when existing nonregu-
larized models are used. In comparison, use of the proposed regu-
larized model results in constant response estimates regardless of
the number of integration points used with a mean accuracy of

Fig. 16. Experimental test results compared with regularized numerical model results: (a) Specimen 3; (b) Specimen 4; and (c) Specimen 5.
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94% for the five test specimens. The regularized model provides
more accurate results against experimental data and more stable and
reliable results for both static and dynamic analyses in comparison
with a nonregularized model. As specimen lengths change, such as
from lab-scale test specimens to the analysis of full-scale columns,
the proposed regularization approach alleviates convergence issues
and produces consistent results across integration points and length
scales in numerical modeling and analysis.

Appendix. Additional Analysis Results

Fig. 15 shows the static cyclic analysis results for Specimens 3, 4,
and 5 as described in Table 4. Comparison between the experimen-
tal tests and regularized model results for the three specimens is
provided in Fig. 16.

Data Availability Statement

All MATLAB codes and OPENSEES numerical models used
during the study are available from the corresponding author by
request.
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