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Abstract: A probabilistic framework to draw real-time inferences on the maximum response of an uncertain nonlinear structural system
under stochastic excitation based on sensor measurements is proposed. The primary contributions are twofold: first, an exact discretization
solution is derived for the system evolution equation for the nonlinear case. This is validated against a Taylor expansion discretization
solution. Second, a methodology for robust Bayesian estimation of the time-evolving system state is proposed. The system is instrumented
by sensors placed on the structure with inferences drawn using Kalman-based approaches. The sensor observations are used in real time to
estimate system state without any knowledge of the time history of the input motion. The distribution of the maximum response is assessed.
The proposed methodology is applied to a 10-story shear-type sample structure under earthquake loading. The interstory drift is analyzed with
measured data collected through accelerometers placed on the building. A simulation approach is used to demonstrate the ability of the
proposed methodology to accurately estimate nonlinear structural response based on sensor measurements. In addition, the method is shown
to be robust to varying system characteristics. This includes uncertainties in the structural, ground, and input motion parameters, as well as
varying measurement characteristics. DOI: 10.1061/(ASCE)EM.1943-7889.0001277. © 2017 American Society of Civil Engineers.

Introduction

Inferring the response of a structure is an important task in struc-
tural reliability assessment and structural health monitoring, and it
is beneficial to be able to do so based on information from simple,
noninvasive sensor measurements, e.g., from accelerometers placed
sparsely on the structure. With the growing inclusion of nonlinear
behavior of a structure in design and analysis, the ability to assess
nonlinear structural response is becoming increasingly valuable. A
probabilistic approach is required because of uncertainties in both
sensor measurements, e.g., with noisy data, and inputs, e.g., under
stochastic loadings. Such systems, which are also evolving with
time, are effectively visualized as a dynamic Bayesian network
(DBN) with states estimated using Kalman-based approaches. In
this study, the focus is on real-time processing of the data from
accelerometers mounted on the structure to infer the maximum
structural response, including maximum interstory drift, when the
structure is subjected to unknown stochastic excitations.

Previously, Tien et al. (2016) proposed a probabilistic frame-
work to infer structural response in the linear range based on accel-
erometer data. However, the methodology changes considerably for
nonlinear behavior. The dynamic data in such nonlinear systems
can be processed using frameworks such as the extended Kalman
filter (EKF) and unscented Kalman filter (UKF). The EKF and
the UKF are able to use the data measured by accelerometers to

estimate the structural response, including displacement-based
responses, without any prior knowledge of the excitation, e.g., an
earthquake ground motion. This also requires a discretization
solution for the continuous system.

The study begins with an observation matrix of structural accel-
erations due to a random earthquake input, including terms for
measurement error and ambient noise. Using Kalman estimation
methods, the output of the DBN is inference on the mean displace-
ments and velocities at each time step of the data recording and the
time-evolving joint probability distribution of the displacement and
velocity responses. This is used in estimating a stochastic distribu-
tion of the maximum response. The study demonstrates the ability
of the methodology in the nonlinear case to estimate the displace-
ment response from accelerometer measurements and obtain
analytical probabilistic distributions of the maximum response
exceeding desired response levels for high thresholds. This estima-
tion is shown to be robust to various system uncertainties.

The rest of the paper is organized as follows. The following
section provides background on related work in this area. Next,
the proposed framework is described. This includes descriptions
of the structural and ground dynamical subsystems, and the derived
discretization solution for the continuous system. The methodology
for estimating the system state and the distribution of the maximum
response is described. The proposed method is then applied to the
case of a multistory shear-type building model under seismic ex-
citation. Several inference results from this example case are pre-
sented, including: comparisons of the two formulations, EKF and
UKF; stochastic distributions of interstory drifts; distributions of
the maximum structural response; and the effects of parameter un-
certainties and varying measurement characteristics on the estima-
tion results. The proposed framework supports structural reliability
assessment and decision making for structural health monitoring
applications, including the design of effective instrumentation strat-
egies. It provides a basis for the use of accelerometer readings even
under conditions of uncertainty to estimate nonlinear structural
response.
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Background and Related Work

The dynamic Bayesian network is a probabilistic framework that
models the evolution of a system over time. It is comprised of a
sequence of Bayesian networks (BNs) connected by direct links
to advance the system at each time step based on the prior infor-
mation. The reader is referred to Murphy (2002, 2012) and Barber
(2012) for an overview of DBNs. Bayesian models have previously
been used in various civil and structural engineering applications.
This includes work in structural health monitoring to probabilisti-
cally measure damage such as Vanik and Beck (1997) and Vanik
et al. (2000); work in structural model updating such as Katafygiotis
and Yuen (2001), Yuen and Katafygiotis (2002), and Au et al.
(2013); and work in system-level reliability assessment such as
Tien (2014) and Zhang and Au (2015). In contrast to these previous
studies, the goal of this study is to estimate the nonlinear structural
response, including displacement-based interstory drifts, based
solely on sensor measurements without knowledge of the excitation
time history.

To do this, the extended Kalman filter and unscented Kalman
filter are used. The EKF and the UKF have been developed to
estimate the system state for a dynamically evolving nonlinear
system. These two methods can be used to perform computations
over the DBN to obtain the marginal system state at every time step
and project the trajectory of the evolving system. The reader is
referred to texts such as Kalman (1960) and Terejanu (2008) for
detailed descriptions of the Kalman, EKF, and UKF models. In
the past, EKF and UKF have been used most widely in nonlinear
analysis for system identification as in Hoshiya and Saito (1984),
Jeen-Shang and Yigong (1994), and more recently in Al-Hussein
and Haldar (2015), and Mu and Yuen (2015); and to identify struc-
tural damage through structural parameter approximation as in
Yang et al. (2006, 2007). The UKF has been used in dynamical
structural engineering applications in Mariani and Ghisi (2007)
and for real-time nonlinear structural system identification in
Wu and Smith (2007), Chatzi and Smyth (2009), and Xie and Feng
(2012).

In these studies, known excitations are used to identify or update
the structural parameters. However, in this study the excitation is
unknown and structural system parameters are assumed to be esti-
mated beforehand. Without knowledge of the ground motion time
history, e.g., the accelerogram of the earthquake, the goal is to use
only the sensor observations, e.g., from structure-mounted acceler-
ometers, to estimate the system state in real time. The effect of
uncertainty or errors in the initial estimation of the structural
parameters is investigated later in the study.

In addition, the methodology presented in this paper requires
discretization of the continuous dynamical equation of motion,
which may not be readily integrable. An exact discretization sol-
ution is derived for the equation of motion satisfying a Lagrange
partial differential equation (PDE) condition. Lagrange methods for
discretization of nonlinear engineering problems have previously
been used in control systems as in Hori et al. (1992), Markazi
and Hori (1995), and Nesic and Teel (2004); mathematical appli-
cations such as Guy (2006); and systems with exact discretization
solutions such as Sakamoto et al. (2011). The solution described in
this paper is specifically for structural response evolution. The ex-
act solution is compared to a second discretization solution derived
based on the Taylor expansion. This method of discretization of
nonlinear systems has been used for approximate solutions in en-
gineering applications, (e.g., Kazantzis and Kravaris 1999; Zhang
and Chong 2006; Zhang et al. 2011; Zheng et al. 2013).

To describe the system nonlinearity, the Bouc-Wen model pro-
posed in Bouc (1967) and Wen (1976) is used in this study. This

model has been widely used in nonlinear structural analysis as
in Wen (1980), Wen (1989), Hurtado and Barbat (1996), Song and
Der Kiureghain (2006), and Ikhouane et al. (2007). In addition to
real-time estimation of the structural response, this study is also
interested in a probabilistic distribution of the maximum response.
To obtain this, the probability of up-crossings of a nonstationary
process as initially formulated by Rice (1944) and subsequently
derived for non-zero-mean processes in Tien et al. (2016) is used.
This employs an approximation of the crossings of the maximum
structural response over a safe threshold as Poisson events. Finally,
while the methodology is applicable to any stochastic excitation,
this study assesses the response of the structure to a seismic exci-
tation in particular. To do this, accelerometer observations under a
random earthquake are simulated. The simulation of ground motion
is performed as in Rezaeian and Der Kiureghian (2010). The choice
of parameters in the model of the ground excitation is described in
the “Application” section of this paper.

Methodology

The proposed framework consists of two major sections: discreti-
zation solution and state estimation. The equation of motion is a
second order differential equation while the recorded sensor data
is discretized. Therefore, a discretization solution is needed to
process the data.

Discretization

The dynamical system is modeled as a cascade of two dynamical
subsystems. First, the ground dynamical subsystem takes white
noise at the bedrock as input and produces an acceleration at the
surface. Second, the structural subsystem takes the input ground
surface acceleration and produces the output structural response.
In this formulation, a capital bold letter (e.g., M) represents a ma-
trix, a small bold letter (e.g., us) represents a vector and a small
italic letter (e.g., ag) represents a scalar quantity. The letter u
represents displacement while a represents acceleration, and sub-
scripts s and g indicate variables for the structure and ground,
respectively.

Structural Dynamical Subsystem
In the structural subsystem, nonlinearity may be caused by nonlin-
ear stiffness or damping. The earthquake-induced forces also cause
nonlinearity due to P-δ and P-Δ effects. In this study, approximate
amplification factor B2 is used for force nonlinearity, as specified
per Appendix 8 of the AISC Steel Construction Manual and calcu-
lated using approximate second-order analysis. Nonlinear behavior
of a steel structure is considered for this study. However, the meth-
odology may be used for nonlinearity of any structural material.

The equation of motion for the structure subjected to base
motion is given by

Müs þCüs þ FðusÞ ¼ −B2M1ag þ f ð1Þ

where M, C and F represent the mass, damping, and spring force
matrices, respectively; and f represents ambient vibrations and ad-
ditional uncertainty in the external force during the seismic event.
Defining zTs ∶ ¼ ½uT

s u̇T
s & in first-order form, the equation of

motion is

żs ¼
!
0 I

0 −M−1C

"
zs þ

!
0

−M−1FðzsÞ

"
þ
!

0

−1

"
B2ag þ

!
0

M−1

"
f

ð2Þ
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where B2 is defined from AISC specification Appendix 8 as

B2∶ ¼ 1

1 − Pstory

Pestory

ð3Þ

Pestory∶ ¼ 0.85
HL
Δh

ð4Þ

where H = total horizontal force at the degree of freedom; L =
height of the story; Pstory = total vertical load supported by the
story; and Δh = first order deflection due to H and L.

Ground Dynamical Subsystem
The equation of motion for the ground surface with respect to the
bedrock-modulated white noise w is given by

üg þ 2ξgωgu̇g þ ω2
gug ¼ −w ð5Þ

where the frequency and damping ratio of the ground filter are rep-
resented by ωg and ξg, respectively. Defining zg∶ ¼ ½ ug u̇g &T, the
equation of motion in first-order form is

żg ¼
!

0 1

−ω2
g −2ξgωg

"
zg þ

!
0

−1

"
w ð6Þ

The total acceleration at the surface of ground, ag, is given as

ag ¼ üg þ w ¼ ½−ω2
g −2ξgωg &zg ð7Þ

State Space Representation
Combining the two subsystems in first-order form and defining
zT∶ ¼ ½ zTg zTs & yields the state space representation of the dy-
namic system as

ż ¼

2

66664

0 1 0 0

−ω2
g −2ξgωg 0 0

0 0 0 I

1B2ω2
g 12B2ξgωg 0 −M−1C

3

77775
zþ

2

66664

0

0

0

−M−1FðzsÞ

3

77775

þ

2

66664

0

−1
0

0

3

77775
wþ

2

66664

0

0

0

M−1

3

77775
f ð8Þ

ż ¼ AcðzÞ þ bcwþ Bcf ð9Þ

Discretization Solution: Exact
Next, the continuous system must be discretized in the time
domain. A direct integration of the differential form given in
Eq. (10) cannot be used as the nonlinearity is because of one
element of the vector z and occurs nonuniformly in Eq. (9)

dz
dt

¼ AcðzÞzþ bcwþBcf ð10Þ

Therefore, a discretization solution is derived. This exact solu-
tion is later verified using a Taylor expansion-based discretization.
For the exact solution, the given system, ż ¼ AcðzÞzþ bcwþ
Bcf, is transformed into a linear system, dy=dt ¼ yðtÞ, using a
transformation to the differential form y ¼ exp½VðzÞ&1, where
VðzÞ is a n × n matrix as in Sakamoto et al. (2011).

Defining z ¼ ½ z1 z2 z3 z4 &, linearization is possible if
the following condition is satisfied:

f 1ðz; tÞ
∂Vðz; tÞ
∂z1 þ : : : þ f 4ðz; tÞ

∂Vðz; tÞ
∂z4 ¼ In ð11Þ

The four governing equations are

ż1 ¼ f1ðz; tÞ ¼ z2 ð12Þ

ż2 ¼ f2ðz; tÞ ¼ −ω2
gz1 − 2ξgωgz2 − w ð13Þ

ż3 ¼ f3ðz; tÞ ¼ z4 ð14Þ

ż4 ¼ f4ðz; tÞ

¼ 1B2ω2
gz1 þ 12B2ξgωgz2 −M−1Fðz3Þ −M−1Cz4 þM−1f

ð15Þ

Unless the damping is nonlinear, the previous partial differential
equations are linear with respect to their corresponding elements.
The treatment for the case of nonlinear damping is described later
in this section.

For linearized equations, Lagrange characteristic equations per
Eq. (11) can be written as

fjðz; tÞ
∂Vðz; tÞ
∂zj

¼ Ij j ∈ ½1,4& ð16Þ

Solution of the characteristic equations results in the values of
the elements of V.

Given ∫ dy=yðtÞ ¼ ∫ dt and the transformation for y, this yields
½lnðyÞ&kþ1

k ¼ ∫ dt and

½ðVðzÞ1Þ&kþ1
k ¼ 1

Z
dt ð17Þ

Using Eqs. (12)–(15) and Eq. (16) together, the authors obtain
for the elements of V

½V11&kþ1
k z2k ¼

Z
z1kþ1

z1k

dz1 ¼ z1kþ1
− z1k ð18Þ

½V22&kþ1
k

¼
lnð−ω2

gz1k − 2ξgωgz2kþ1
− wkÞ − lnð−ω2

gz1k − 2ξgωgz2k − wkÞ
−2ξgωg

ð19Þ

½V33&kþ1
k z4k ¼ z3kþ1

− z3k ð20Þ

½V44&kþ1
k ¼

ln
!
1B2ω2

gz1kþ12B2ξgωgz2k−M−1Fðz3k Þ−M−1Cz4kþ1
−M−1fk

1B2ω2
gz1kþ12B2ξgωgz2k−M−1Fðz3k Þ−M−1Cz4k−M−1fk

"

−M−1C
ð21Þ

While nonlinear stiffness is treated in this study, if damping
coefficient C is nonlinear, it can be integrated into Eq. (15) accord-
ing to the nonlinear function. For this study, using Eq. (17) and
Eqs. (18)–(21) together, the following system evolution equations
are obtained in discrete time with Δt indicating the discretization
time step

© ASCE 04017062-3 J. Eng. Mech.
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z1kþ1
¼ z1k þ z2kΔt ð22Þ

z2kþ1
¼

½ð−ω2
gz1k − 2ξgωgz2k − wkÞ expð−2ξgωgΔtÞ& þ wk þ ω2

gz1k
−2ξgωg

ð23Þ

z3kþ1
¼ z3k þ z4kΔt ð24Þ

z4kþ1
¼ f½ð1B2ω2

gz1 þ 12B2ξgωgz2 −M−1Fðz3kÞ −M−1Cz4k
−M−1fkÞ expð−M−1CΔtÞ& − ð−1B2ω2

gz1

− 12B2ξgωgz2 þM−1Fðz3kÞ þM−1fkÞ&g=ð−M−1CÞ ð25Þ

In matrix form, this can be written as

zkþ1 ¼ A1zk þ F1 þ bwk þ Bfk ð26Þ

where

A1 ¼

2

666666664

1 Δt 0 0

−ω2
gðe−2ξgωgΔt − 1Þ
−2ξgωg

e−2ξgωgΔt 0 0

0 0 I IΔt
1B2ω2

gðe−M
−1CΔt − 1Þ

−M−1C
12B2ξgωgðe−M

−1CΔt − 1Þ
−M−1C

0 e−M−1CΔt − 1þ I

3

777777775

ð27Þ

F1 ¼

2

666664

0

0

0

−M−1FðzsÞðe−M
−1CΔt − 1Þ

−M−1C

3

777775
ð28Þ

b ¼ bcðe−2ξgωgΔt − 1Þ
−2ξgωg

ð29Þ

B ¼ Bcðe−M
−1CΔt − 1Þ

−M−1C
ð30Þ

This process yields the exact discretization result for the non-
linear equations modeling the structural response. The accuracy of
this solution is only dependent on the discretization step, i.e., the
sampling period of the sensor. The method is exact for all other
parameters.

Discretization Solution: Taylor Expansion
A discretization solution based on an infinite Taylor series expan-
sion of the equation is now provided. This is used to verify the exact
solution presented in the previous section. Consider a nonlinear
dynamic system with state space given as

ż ¼ fðzÞ þ pgðzÞ ð31Þ

where z = state variable; p = scalar input; and f and g = smooth
functions of z. For such a case, the Taylor method for discretization
can be used to obtain an approximate solution as in Kazantis and
Kravaris (1999). The solution begins with a uniformly convergent
Taylor series with coefficients given as functions of successive par-
tial derivatives such that

zkþ1 ¼ zk þ
X∞

l¼1

Tl

l!
dlz
dtl

####tk ð32Þ

where T ¼ tkþ1 − tk is the sampling period; and zðkÞ = state space
vector at time tk ¼ kT. Eq. (32) can be written as

zkþ1 ¼ zk þ
X∞

l¼1

A½l&ðzk;pkÞ
Tl

l!
ð33Þ

where A½1&ðz;wÞ¼ fðzÞþpgðzÞ; and A½lþ1&ðz;wÞ¼ ½∂A½l&ðz;uÞ=
∂z&ðfðzÞ þpgðzÞÞ∀l∈NðnaturalÞ

As an example, the second order approximation deduced from
this result is given as

zkþ1 ¼ zk þ ffðzkÞ þ pkgðzkÞgT þ
!∂f
∂z ðzkÞfðzkÞ

þ pk

$∂g
∂z ðzÞfðzkÞ þ

∂f
∂z ðzkÞgðzkÞ

%
þ p2

k

$∂g
∂z ðzÞgðzkÞ

%"

ð34Þ

Depending on the type and behavior of the nonlinearity, more
terms may be added to obtain a more accurate approximate solu-
tion. However, if the nonlinear function is not differentiable at a
given step then this method cannot be used. For example, if the
nonlinearity is modeled as bilinear and not differentiable at a spe-
cific point, then this method will result in a nonreliable solution.
For the nonlinearity used in this study the Taylor expansion solu-
tion is applicable. The outcomes from the two discretization solu-
tions are presented in the “Results” section.

Estimation

Now, the authors provide the methodology for estimating the sys-
tem state as it evolves over time. With the formulation and variables
as defined in the previous sections, the graphical dynamic Bayesian
network (DBN) representation of the system evolution is shown in
Fig. 1. In sequential BN slices, the system state z evolves with time
based on the input random variables w and f and the system state at
the previous time step. Observations y (shaded nodes in the DBN)
at each time slice are made with some measurement noise v and
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conditioned on the system state. The system is visualized to be
Bayesian because the state at a time step is estimated from the pre-
vious step and then conditioned using the sensor observation at the
given step. Kalman filter frameworks are used to perform the
updating.

Observation Equation
Observations used to estimate the maximum response are from
structure-mounted accelerometers. The sensors measure the total
acceleration of the structure

at ¼ üs þ 1ag ð35Þ

Combining with the equation of motion Eq. (1), this can be
written as

at ¼ −M−1FðusÞ −M−1Cu̇s þM−1f ð36Þ

Let S define the matrix that selects the degrees of freedom
where accelerometers are placed. The observation equation is then
given as

yk ¼ DðzkÞ þ vk þ SM−1fk ð37Þ

where

D ¼ −SM−1½ 0 0 0 C & − SM−1FðusÞ ð38Þ

and vk = measurement error, which is taken to be normally distrib-
uted with zero mean and time-independent variance σ2

v. The effect
of the uncertainty in the sensor measurements on the accuracy of
the estimation is investigated in the results section. The random
noise f is modeled as a normally distributed zero-mean process
with statistically independent variances for each time step and de-
gree of freedom such that the covariance matrix is given by σ2

fI.
This random term accounts for ambient noise and additional envi-
ronmental uncertainties.

Extended Kalman Filter
Based on the sensor measurements y, the extended Kalman filter
(EKF) can be used to estimate the evolution of the nonlinear system
state z. In this study, an overview of EKF is presented. The reader is
referred to other texts, (e.g., Terejanu 2008) for further details. The
EKF propagates the state space vector by linearizing all nonlinear
mappings about the mean of the previous time step. It is then
updated using approximate correctors based on the gradients or
Jacobians of the mappings. The framework gives the mean vector
and covariance matrix for the system state at every time step.

Consider a system with evolution equation

zkþ1 ¼ fkðzkÞ þ wk ð39Þ

and observation equation

ykþ1 ¼ hkþ1ðzkþ1Þ þ vkþ1 ð40Þ

where fkðzkÞ represents the system evolution as in Eq. (26); and
hkþ1ðzkþ1Þ represents the sensor observation as in Eq. (37). First,
the state is predicted based on the expected value of the evolution
equation about the mean at the previous time step.

zpkþ1 ¼ fðzFk Þ ð41Þ

Vp
kþ1 ¼ Qk þ∇fkjzFk V

F
k∇fTkjzFk

ð42Þ

where z and V represent the mean and variance of a state variable,
respectively; superscript p represents values in the predictor phase;
F represents final estimated values; and Qk = variance of input
parameter w at time slice tk.

Next, the estimated value from the predictor phase is corrected
through conditioning on the observation matrix. Correction based
on the error in the observed value of y compared to the projected
value of y using the estimated state results in the final estimated
mean and variance

zFkþ1 ¼ zpkþ1 þ Vp
kþ1∇hTkþ1ð∇hkþ1V

p
kþ1∇hTkþ1 þ Rkþ1Þ−1

× ðykþ1 − hkþ1ðzpkþ1ÞÞ ð43Þ

VF
kþ1 ¼ Vp

kþ1 − Vp
kþ1∇hTkþ1ðRkþ1 þ∇hkþ1V

p
kþ1∇hTkþ1Þ−1

× ∇hkþ1V
p
kþ1 ð44Þ

where R = variance with respect to v.

Unscented Kalman Filter
The unscented Kalman filter (UKF) can also be used to infer the
state space vector from observations. Theoretically, and as shown in
Mariani and Ghisi (2007), it results in more accurate estimates than
the EKF for nonlinear problems. The UKF distributes a set of sto-
chastic sigma points for the state vector at each time step and prop-
agates them through the actual nonlinear mapping. The order of
accuracy for the mean and covariance obtained through this process
depends on the number of sigma points. Sigma points are scattered
about the mean of the previous time step and are 2nþ 1 in number,
where n is the length of state space vector. The sigma points are
weighted such that

P
2n
i¼0 W ¼ 1, where W is the weight associated

with the ith sigma point.
Values of the sigma points are chosen such that

z0k−1 ¼ zFk−1 ð45aÞ

zjk−1 ¼ zFk−1 þ
! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðψ2nÞVF
k−1

q "

j
j ∈ ½1; n& ð45bÞ

zjþn
k−1 ¼ zFk−1 −

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðψ2nÞVF

k−1
q "

j
j ∈ ½1; n& ð45cÞ

where the first sigma point is chosen at zFk−1, the mean of the state
vector at the previous time step; VF

k−1 = variance; and ψ2 = constant
defining the distance of a sigma point from the previous mean.

Fig. 1. DBN representation of system evolution
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The weight attached to the mean of each sigma point is given as

Wm
i ¼

8
>><

>>:

ψ2 − 1

ψ2
i ¼ 0

1

2ψ2n
otherwise

ð46Þ

The weight attached to the variance of each sigma point is

Wc
i ¼

8
>>><

>>>:

ψ2 − 1

ψ2
þ 3 − ψ2 i ¼ 0

1

2ψ2n
otherwise

ð47Þ

In the predictor phase, every sigma point is propagated through
the discretization function and the mean and variance of the pre-
diction is calculated using the weights defined in Eqs. (46) and
(47). Estimates of the mean and variance in the predictor phase are
given as

zp;ik ¼ fðzik−1Þ ð48Þ

zpk ¼
X2n

i¼0

Wm
i z

p;i
k ð49Þ

Vp
k ¼

X2n

i¼0

Wc
i ðz

p;i
k − zpk Þðz

p;i
k − zpk Þ

T þQk−1 ð50Þ

where Qk−1 = variance of input parameter w at time slice tk−1.
The predicted values of the mean and variance of the system

state are again conditioned using the observation matrix in the
corrector phase to produce the final estimated values

zFk ¼ zpk þ Vp
k∇hTk ð∇hkV

p
k∇hTk þ RkÞ−1½yk − hðxpk Þ& ð51Þ

VF
k ¼ Vp

k − Vp
k∇hTk ð∇hkV

p
k∇hTk þ RkÞ−1∇hkþ1V

p
k ð52Þ

where R = variance with respect to v. Estimation accuracy using
EKF compared to UKF is given in the “Results” section.

Authors Distribution of the Maximum Response
The EKF and UKF produce time history estimates of the system
state. For reliability problems, the maximum response is of particu-
lar interest. To obtain the distribution of the maximum response, the
authors use the analytical solution for extreme values of the inferred
structural response derived in Tien et al. (2016). This is based on an
assumption of exceedances of extreme values over safe thresholds
as Poisson events, which holds for high thresholds and low-
probability events. Thus, the probability of the response in an
interval ½0;T& exceeding a given threshold value ζ can be approxi-
mated by

PðZmax > ζÞ ¼ 1 − PðZmax ≤ ζÞ≈ 1 − exp½−
ZT

0

νðζþ; tÞdt&

ð53Þ

where Zmax ¼ maxt½ZðtÞ& is the extreme value for the nonstationary
process ZðtÞ, which is a function of the system state zs. The var-
iable T is the duration of the response and νðζþ; tÞ the mean ζ-level
up-crossing rate.

To obtain an expression for νðζþ; tÞ, a new process XðtÞ ¼
zðtÞ − μzðtÞ with zero mean and standard deviation σXðtÞ ¼ σZðtÞ
is defined with an updated threshold for the new process,
ηðtÞ ¼ ζ − jμzðtÞj. In this case, the crossing rate becomes

νðζþ; tÞ ¼ νX½ηðtÞþ; t&

¼
expð−1η

2

2σ2X
Þ

2πσXσX

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p
$
σ2
Ẋð1− ρ2Þexp

!
− r2

2σ2
Ẋð1− ρ2Þ

"

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1− ρ2Þ

q
σẊ

!
1−Φ

'
r

σẊ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p
("'

σẊρη
σX

− η̇
(%

ð54Þ

where σX and σẊ = standard deviations of the processes X and Ẋ,
respectively; ρ ¼ ρXðtÞẊðtÞ ¼ cov½XðtÞẊðtÞ&=σXσẊ is the time-
dependent correlation coefficient, r ¼ η̇ − σẊρη=σX; and Φð:Þ
denotes the normal cumulative distribution function (CDF).

The values in Eq. (54) are obtained from the EKF and UKF in-
ference results. The outcome is the CDF of the exceedance prob-
ability of the maximum response at high thresholds. This enables
probabilistic assessment of the risk of the structural response
exceeding a given threshold over the duration of the excitation, in-
cluding for small exceedance probabilities that would be infeasible
to obtain using alternative sampling-based methods.

Application

Modeling the Structure

The proposed method is applied to a shear-type building of 10 sto-
ries as shown in Fig. 2 to demonstrate its use. This model is chosen

Fig. 2. 10-story shear-type structure

© ASCE 04017062-6 J. Eng. Mech.

 J. Eng. Mech., -1--1 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
Li

br
ar

y 
on

 0
4/

20
/1

7.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



to be consistent with Tien et al. (2016) and facilitate comparison of
the results with the linear case. For application to real-world prob-
lems, a condensed structural parameter matrix can be used based on
predicted eigenvalues of degrees of freedom with uncertainties
added to reflect modeling errors. The robustness of the methodology
to uncertainty in assumed parameters is investigated later in the
study. The stiffness for each story is assumed to follow the Bouc-
Wen model, with the resistive force given as FðtÞ ¼ αKiusðtÞ þ
ð1 − αÞDKiφðtÞ. In this case α is the ratio of final to initial stiffness
Ki and φðtÞ is a hysteretic parameter given by φ̇ðtÞ ¼ Au̇sðtÞ−
βju̇sðtÞjjφðtÞjn−1φðtÞ − γu̇sðtÞjφðtÞjn.

For each story, the authors assume the mean values of mass m
and stiffness parameter ki to be unity and damping constant c to be
0.1 such that the coefficient of damping is 5% in the linear case.
Variables α,D 1, A, β, γ, and n are chosen to be 0.5, 1, 1, 0.5,−1.5,
and 2, respectively, as in Wen (1980). Initial results in the following
section assume one known realization of values for the story param-
eters. To reflect the uncertainty in the ability to know the values of
structural parameters exactly, these parameters are later random-
ized, distributing them with increasing coefficients of variation to
investigate the performance of the methodology under increasing
degrees of uncertainty.

The ambient noise and sensor measurement error are modeled
as zero-mean Gaussian processes, with variances 0.5 and
0.25 m=s2, respectively, and assuming independence between sen-
sors. One sensor is assumed to be placed on each story. The effect
of varying the number, placement, and accuracy of the sensors on
the estimation error is presented at the end of the “Results” section.
As previously described, the study uses a Bouc-Wen model for the
force nonlinearity. However, the results for a cubic or bilinear stiff-
ness model have been found to be qualitatively consistent with the
results presented in this study. Finally, it is noted that probabilistic
inference on accelerations, velocities, and displacements at all
stories can be obtained using the proposed methodology. The re-
sults shown are for the interstory drift between stories four and five,
called interstory drift #5, throughout this paper for consistency and
to demonstrate the ability of the method to estimate interstory drift
based on measured accelerations.

Modeling the Ground Excitation

To model the stochastic ground excitation, an earthquake is simu-
lated as proposed by Rezaeian and Der Kiureghian (2010). Accel-
eration at the bedrock w is modeled as a modulated, band-limited,
normally distributed white noise process with zero mean and time-
varying variance. The time-dependent variance is treated as propor-
tional to a gamma probability density function (PDF). A scaled
gamma PDF is a reasonable representation of an earthquake as
it is nonnegative, starts at and tends to zero, and follows the shape
of most earthquakes skewed with a longer right-side tail. The shape
(k) and scale (θ) parameters for the gamma PDF are found based on
the seismic variables as

k ¼
tmax
eq

θ
þ 1 ð55Þ

θ ¼ − 1

2
tmax
eq þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4tmax2

eq þD2
5−95

q
ð56Þ

These parameters ensure that the mode of the PDF coincides
with the time for the maximum intensity of the earthquake tmax

eq
and the central 90% of the distribution corresponds with the total
duration of the earthquake D5−95, which is defined as the time
between 5 and 95% Arias intensity values. A representative

simulation of bedrock motion w is shown in Fig. 3 with tmax
eq ¼

20 s, D5−95 ¼ 25 s, and scaled by a factor of 70 with discretization
time step ¼ 0.01 s.

The parameters for the input motion are generally subject to
high degrees of uncertainty. In the first part of this study, these
values are assumed to be known at the site of interest. Later, the
robustness of the proposed method to uncertainty in these input
motion parameters is investigated and demonstrated. From the
bedrock excitation w, the surface acceleration is calculated using
ground filter parameters of ωg=2π ¼ 1.5 and ξg ¼ 0.4. The effect
of uncertainty in ground parameter values is investigated as well.

The randomized earthquake is used to generate an observation
matrix for the sensors placed on the structure. These observations
are used to estimate the structural response under the excitation. At
the same time, the simulation finds the actual response of the struc-
ture under the given ground motion. The estimated response using
only the information from the sensor measurements is compared
with the actual response to examine the accuracy of the method.

Results

The process of investigation is as follows. The authors simulate the
bedrock excitation, surface acceleration at the ground, and resulting
structural response; this is called the actual response of the system.
The structural responses are then used to simulate sensor observa-
tions, including measurement error. It is based on these observa-
tions that the study estimates the structural response using the
DBN formulation and associated EKF and UKF. With the formu-
lation described, the objective is to estimate system state z, includ-
ing displacement responses, based solely on the accelerometer
measurements y. The estimated results are compared with actual
responses to assess the performance of the proposed methodology.

The following results are presented: verification of the derived
discretization solutions by comparing results using exact versus
Taylor approximation methods; comparison of the estimation accu-
racies using EKF versus UKF; probabilistic inferences on the maxi-
mum response of the structure; robustness of the methodology to
uncertainties in the structural, ground, and input motion parameters;
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Fig. 3. Sample bedrock excitation w versus time, where w is nor-
mally distributed with time-dependent variance proportional to a
gamma PDF

© ASCE 04017062-7 J. Eng. Mech.

 J. Eng. Mech., -1--1 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
Li

br
ar

y 
on

 0
4/

20
/1

7.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



and the effect of the number, placement, and accuracy of sensors on
the ability to estimate the structural response.

Verification of Discretization Formulation

To verify the derivation of the discretization solution for nonlinear
systems, the results obtained by the exact solution are compared to
the Taylor approximation up to the second derivative term. The
simulated ground motion is used as the direct input to compare
the resulting responses. Fig. 4 shows the results for the two discre-
tization solutions for the interstory drift between stories four and
five. The figure shows a close correspondence between the exact
and Taylor discretization solutions, including capturing of the
peaks. Including more terms in the Taylor formulation will decrease
the error even further. However, it will increase the computational
time and in some cases may not be feasible if the nonlinear function
is nondifferentiable. The approximate solution will also contain
more error with increasing nonlinearity. The exact discretization
formulation is therefore used in the remaining portions of this
study.

EKF versus UKF

Fig. 5 shows the estimation results using UKF and EKF compared
with the actual response from the simulation for the interstory drift
between floors four and five. To facilitate direct comparison be-
tween UKF and EKF, this analysis assumes data is available from
accelerometers mounted at all 10 degrees of freedom. The results
are shown more clearly in Fig. 6, which focuses on the highest peak
near 37 s to distinguish the plots. From Fig. 6, using the UKF re-
sults in a smaller variance in the estimation compared to the EKF,
with a narrower band in the UKF μ' 2σ estimates. Additionally,
the UKF mean estimate corresponds more closely with the actual
response. The total root mean square (RMS) error over the full time
history with respect to the actual simulation is 0.0073 (in units of
displacement) for UKF compared to 0.0091 (in units of displace-
ment) for EKF. Hence, UKF gives a more accurate estimation with
lesser variance, and is the preferable framework for use in estima-
tion for this application. Hereafter, estimation results presented are
from the UKF.

Note that small deviations in the UKF estimates compared to the
actual response are shown in Fig. 5 at the beginning of the time
history. This is due to the assumption in the estimation of the variance

of the displacement at the initial time step as one unit. However, as
evident from Fig. 5 and for the peak in Fig. 6, the estimation vari-
ance as the excitation continues is on the order of 10−4 (in units of
displacement-squared). Thus, while the UKF analysis fluctuates in
the beginning of the time history, it quickly converges to the actual
response. As the variance of the displacement would not be known
beforehand, the initial assumption is not changed.

Distribution of the Maximum Response

The ability to use the time history estimates as previously shown to
perform probabilistic inference on the maximum response is now
investigated. The results from the analytical formulation for prob-
ability of exceedance of the process above safe thresholds are com-
pared with Monte Carlo (MC) simulations. A total of 10,000 MC
realizations are generated for the posterior process with randomly
sampled priors.

Fig. 7 shows the obtained stochastic distribution of the maxi-
mum response. It gives the complementary CDF of the maximum
interstory drift of each story, i.e., the probability of the maximum
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Fig. 4. Interstory drift under input seismic motion for exact and Taylor
expansion discretization solutions
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response exceeding a threshold value of displacement. For each
story, the analytical solutions, e.g., id 1 for interstory drift at the
first floor, are compared with MC realizations, e.g., MC id 1. The
distribution for MC is the empirical complementary CDF obtained
by counting the number of simulations where the absolute maxima
exceeds a threshold out of the total 10,000 MC simulations.

In Fig. 7, there is close correspondence between the analytical
and MC results across the degrees of freedom. This shows the abil-
ity of the formulation to obtain stochastic distributions of the maxi-
mum response based on the sensor measurement data. However, the
analytical solution plots display some fluctuations at lower thresh-
olds as can be seen in the plots for id 1, id 2, and id 3 in Fig. 7. This
is in contrast to the expected monotonically decreasing comple-
mentary CDF. This is because of the assumption of Poisson cross-
ings above the threshold of interest. For example, at low thresholds,
the assumption does not hold as clusters of crossings are likely.
Therefore, the analytical solution is suitable for use as a predictor
at high thresholds and low probabilities of exceedance. These are
the significant, high-impact events that are of interest, particularly
when the structure is designed to withstand lower threshold dis-
placements. The formulation presented enables risk analysis results

for these extreme events, which may be infeasible to obtain using
MC approaches.

Robustness of Methodology to Uncertainty in
Structural and Ground Parameters

The analyses up to this point have been based on the assumption
that all system parameters are known. In general, these parameters
are estimated and subject to varying degrees of uncertainty. Instead
of the previously assumed single values for each parameter, in this
section they are randomized with increasing coefficients of varia-
tion. For structural parameters, damping is in general more difficult
to estimate compared to mass and stiffness. Therefore, varying co-
efficients of variation (COVs) of 0–20% from the nominal values
for mass and stiffness and 0–40% for damping are used. The values
of these parameters are lognormally distributed at each level of
COV. Similarly, the ground parameters are also uncertain. The nomi-
nal values of ground parameters are set as assumed previously with
ωg=2π ¼ 1.5 and ξg ¼ 0.4. These parameters are now varied by dis-
tributing them lognormally with COVs ranging from 0 to 20%.

The combined effect of uncertainty in structural and ground
parameters is analyzed. For consistency, the estimation result for
the interstory drift between stories four and five are analyzed.
Fig. 8(a) shows the RMS error of the estimated compared to the
actual response with a point plotted for each value of COV in incre-
ments of 1% (2% for damping). For Fig. 8(a), 20 samples are
simulated for each COV value and the mean and standard deviation
of RMS error is calculated over all samples.

From Fig. 8(a), the mean RMS error remains nearly constant
over the range of COVs, while the standard deviation increases with
increasing COVs. Noting the ordinate scale, the maximum μþ 2σ
value of RMS error is less than 5.5% of the maximum response, at
20% COV for mass, stiffness, ground parameters, and 40% COV
for damping. Thus, the inference is robust to uncertainty in the
structural and ground parameters even in the nonlinear case. This
is because the UKF is able to use the information from sensor mea-
surements to overcome the effect of the parameter uncertainty. It
adapts to the discrepancies in the parameters through the changing
observation matrix at each time step.

The variation of the estimate of the maximum structural re-
sponse as a function of varying parameters is also of interest.
Fig. 8(b) depicts the actual absolute maximum of the structural
response with randomly distributed parameters compared to UKF
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estimates based on nominal values of the parameters. Coefficients
of variation are again increasing from 0 to 20% with COV of the
damping coefficient being twice that of the other parameters.

From Fig. 8(b), the UKF-estimated mean maximum structural
response stays within 0.003 units, or within less than 1%, of the
actual maximum response even as COV increases from 0 to 20%
for mass, stiffness, and ground parameters and 0 to 40% for damp-
ing. In addition, the variation of the estimate over 20 samples re-
mains consistent with the variation of the actual response as COV
increases. Results were similar in looking at structural and ground
parameters separately. Thus, the estimate of the maximum is robust
to uncertainty in the assumed parameters for the methodology.

Robustness of Methodology to Uncertainty in Input
Motion Parameters

The input motion parameters to describe an earthquake excitation
are highly variable and generally unknown. The input motions are
recorded and the parameters later investigated. However, this study
uses a simulated ground motion and hence it is possible to analyze
the robustness of the methodology to varying input motion param-
eters. Note that input motion uncertainty is analyzed separately
because while variations in structural and ground parameters reflect
uncertainty in assumptions for the analysis, variations in input
parameters reflect performance of the methodology under different
earthquake events.

In the stochastic ground motion model, two parameters are used
to define the earthquake: time of maximum intensity tmax

eq , and
effective duration of the earthquake between 5 and 95% of the
Arias intensity values D5−95. In this case, these parameters are
varied normally with COVs ranging between 0 and 20% to reflect
variability across earthquake motions. Fig. 9(a) shows the perfor-
mance of the method for COVs varying in increments of 1%, with
the RMS error again calculated as the mean of 20 simulations at
every value of COV.

From Fig. 9(a), the RMS error with varying input parameters
remains nearly constant for all simulations, both in terms of the mean
and standard deviation. This is because the evolution of the system
per the UKF formulation in Eq. (51) depends only on the structural
and ground parameters, without input parameters.

Fig. 9(b) shows the behavior of the maximum response with
increasing variation in input motion parameters. In all cases, the
estimated response, both in terms of mean and standard deviation,
follows closely the actual maximum response. This demonstrates
the estimation methodology to be robust to uncertainty in the input
motion.

Varying Measurement Characteristics

Finally, the effect of the number, placement positions, and meas-
urement errors of the sensors is investigated. Fig. 10 shows RMS
error results for three different sensor configurations. First, when
one sensor is placed at the bottom floor; second, when one sensor
is placed at the top floor; and third, when four sensors are placed
throughout the structure on Floors 1, 4, 7, and 10. The sensor
measurement error is also varied as 0.5, 1, and 2 m=s2. From
Fig. 10, as expected, the RMS error is the lowest when more sen-
sors are used because more information is available on which to
condition the estimation. The RMS error is the highest when only
one sensor is placed at the bottom floor because this captures
the smallest response, thereby providing the least amount of

(a) (b)

Fig. 9. (a) RMS error; (b) estimated maximum response as a function of increasing COVs of input motion parameters

Fig. 10. RMS errors for varying sensor configurations in terms of
number, placement, and precision
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information. Consistent with previous results in Tien et al.
(2013, 2016) when only one sensor is placed on the structure,
it is advantageous to mount it on the top floor compared to the
bottom floor.

As expected, looking at sensor noise, the error in the estimates
increases with increasing uncertainty in the sensor measurements.
From Fig. 10, a tradeoff between the number of sensors and the
measurement error is observed. For comparable estimation accu-
racy, more sensors should be used if the sensor measurement error
is higher, but with better precision sensors, fewer sensors can be
used. However, the difference between placing a sensor at the
top compared to the bottom of the structure is most significant.
These results can be applied to structural health monitoring sys-
tems, in designing effective instrumentation configurations to best
support the estimation of structural response.

Conclusion

The proposed methodology uses the Kalman-estimated system
state to assess the nonlinear response of a structure under seismic
load based on observations from accelerometers placed on the
structure. The methodology includes an exact discretization solu-
tion derived for the nonlinear system and validated against a Taylor
expansion-based discretization method. The estimation results
show the UKF to provide the most accurate estimations of struc-
tural response, particularly at the peak. The methodology provides
a probabilistic assessment of the distribution of the maximum re-
sponse in particular, with the analytical results verified through
comparison with MC simulations. Through analyses of the impact
of variations in the system parameters on the results, the method-
ology is shown to be robust to inaccurate or uncertain assumptions
for the structural and ground parameters, as well as across input
motions. Additionally, inferences drawn support decision making
in structural health monitoring applications, including in the num-
ber, placement, and accuracy of sensors required to assess structural
response. The probabilistic formulation presented enables estima-
tion of the stochastic distribution of the maximum nonlinear re-
sponse, under conditions of uncertainty for the system, excitation,
and measurement parameters.
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