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Abstract: Many civil infrastructure systems that deliver resources from source points to sinks, e.g., power distribution and gas pipeline
networks, can be described as acyclic directed networks comprising nodes and links. Reliability assessment of these systems can be
challenging, particularly for systems of increasing size and complexity and if the probabilities of rare events are of interest. This paper
proposes a new analytical probability propagation method for reliability assessment of acyclic directed networks called the directed prob-
ability propagation method (dPrPm). Through a link-adding sequence to propagate a message consisting of the marginal and pairwise node
reliabilities from source nodes to sink nodes, the method results in the upper and lower bounds of all sink node reliabilities. Reliability of a
sink node is measured by the probability of reaching that node from a source node. Compared with previous methods, dPrPm addresses the
case of multiple-sink networks, results in guaranteed reliability bounds, and analyzes acyclic directed networks as relevant for infrastructure
systems. Proofs are provided guaranteeing the accuracy of dPrPm, and computation time is significantly reduced from typical exponential
increases with system size to a polynomial increase. To assess performance, the proposed method was applied to three test applications: a
directed grid network, a power distribution network, and a more complex gas pipeline network under seismic hazard. Results were compared
with the exact solution and Monte Carlo simulations to evaluate accuracy and computational cost. Results showed that dPrPm performs
equally well in terms of accuracy across network reliabilities and achieved order-of-magnitude increases in computational efficiency to
obtain exact bounds on reliability assessments at all system sink nodes. DOI: 10.1061/AJRUA6.0001017. © 2019 American Society of
Civil Engineers.

Author keywords: Reliability analysis; Acyclic directed networks; Infrastructure system reliability; Probability propagation; Reliability
bounds.

Introduction

Many civil infrastructure systems, e.g., power distribution and gas
pipeline networks, are characterized by flow across the system.
Considering system components as nodes and the connections be-
tween them as links, these infrastructures can be modeled as acyclic
directed networks, with resources directed through the network
from supplies to distribution points. Policies regarding inspection,
maintenance, and replacement of components in the system rely
heavily on reliability assessment of node accessibility, measuring
the performance and resilience of the network.

Methods for reliability analysis include analytical and simulation-
based methods. Whereas analytical approaches usually produce an
exact result, enumeration of minimum link sets (MLS), minimum
cut sets (MCS), or possible component states are often necessary
to conduct an analysis. Increasing the number of nodes in the net-
work typically yields an exponential increase in computational
cost. For simulation-based methods, one of the challenges is to
capture rare events. For networks that are highly reliable or highly

unreliable, failure to capture sample points of rare events will result
in high errors. Both the efficiency and accuracy of simulation-based
methods vary on the reliability of links.

To address these challenges in system reliability assessment, a
new analytical method, called the probability propagation method
(PrPm), was proposed (Tong and Tien 2019). The method provides
an estimate of network reliability for general complex networks.
However, there are no guarantees of the accuracy of the estimate.
Rather than providing an approximation, the present paper pro-
poses an advancement of PrPm, the directed probability propaga-
tion method (dPrPm), to provide reliability assessment of directed
acyclic networks with guaranteed upper and lower bounds. This
requires new definitions of the propagation sequence and probabil-
ity updating rules for message propagation. The outcome of dPrPm
is the upper and lower bounds of all sink node reliabilities, given
with 100% confidence level. The computational cost is independent
of link reliabilities. dPrPm reduces the cost from a typical exponen-
tial increase with the number of nodes in a network to a polynomial
increase.

The rest of the paper is organized as follows. The following
section provides background on analytical and sampling-based
system reliability assessment methods, and the origin of the idea
of dPrPm. The proposed dPrPm is detailed in the next section, in-
cluding descriptions of propagation sequences and probability
updating rules. Proofs are given to guarantee the upper and lower
bounds for acyclic directed networks. The paper then applies
dPrPm to three examples: a directed grid network, power distribu-
tion network, and gas pipeline network. Results are shown to
compare performance between the proposed method and existing
methods in terms of accuracy and computation time for network
reliability analysis.
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Background and Related Work

This section briefly introduces some existing methods for system
reliability analysis. More in-depth study is available (e.g., Birolini
2004). Systems that can be reduced to fundamental parallel and
series configurations can be readily analyzed. Analysis becomes
complicated under complex configurations, e.g., general infrastruc-
ture networks represented as acyclic directed networks. Among
analytical methods, one brute force approach is to enumerate all
possible combinations of component states and determine their
outcomes accordingly. Because the computational cost increases
exponentially with the size of the system, total enumeration be-
comes computationally intractable for large networks.

To address this issue, efforts have been made to improve the
computational efficiency and storage requirements of enumeration-
based methods. Tien and Der Kiureghian (2016) and Tong and Tien
(2017) proposed compression and inference algorithms to facilitate
inference in binary and multistate Bayesian network representa-
tions of infrastructure systems. However, computational limits on
system size still exist, particularly for networks with a large number
of parent nodes (Tien and Der Kiureghian 2017). Ebeling (2010)
determined the reliability bounds by taking all MLS in parallel
(survival of any link set yields survival of the system) and all
MCS in series (failure of any cut set yields failure of the system).
The gap between the upper and lower bounds can be wide, how-
ever, because of the independency assumption among all MLS
and MCS. In addition, the use of both Bayesian networks and the
bound-finding method require identification of the MLS or MCS
of a system. Although methods have been proposed to do this
efficiently, e.g., the edge cut algorithm, also known as EG-CUT
algorithm, to generate MCS (Shin and Koh 1998) and a recursive
depth-first search MLS identification algorithm (Applegate and
Tien 2019), this is a NP-hard problem (Suh and Chang 2000) for
general networks.

Recursive decomposition algorithm (RDA) (e.g., Dotson and
Gobien 1979) provides an alternative analytical approach. Lim and
Song (2012) proposed selective RDA to improve the efficiency of
original RDA by identifying the most reliable paths. However, the
computational cost may still exponentially increase, particularly
when the most reliable paths are not significantly more dominant
than others. Kim and Kang (2013) extended application of RDA
to multiple-source-multiple-sink situations. Multiple sinks are con-
nected to one aggregated sink node, however, which loses the re-
liabilities of individual sink nodes. Similar limitations are found in
Liu and Li (2009). In essence, the focus is still on a one-sink node
network. In addition, the number of subgraphs created by eliminat-
ing the failed components still increases exponentially with the
system size.

For simulation-based methods, it is often a challenge to effi-
ciently capture the occurrence of rare events. To address this, sev-
eral sampling methods, e.g., refined stratified sampling strategy
(Shields et al. 2015), rejection sampling from predetermined dis-
tribution (Cheng et al. 2015), and random walks on graphs (Cheng
et al. 2017) have been proposed. Although the sampling size and
efficiency have been improved, challenges still exist in determining
the system outcome. In comparison, the efficiency and accuracy of
PrPm (Tong and Tien 2019) and dPrPm as described in this paper
are not limited by the ability to assess low-probability events. In
Bulteau and El Khadiri (1998) and Zuev et al. (2015), the result
of a sampling point depends on an indicator function, e.g., by com-
parison with MLS or MCS, which can be expensive to evaluate.
One advantage of the proposed directed probability propagation
method is the absence of an indicator function or need to identify
the MLS or MCS of a system.

The idea of PrPm and dPrPm originated from belief propaga-
tion. Details of belief propagation for network graphs were pro-
vided by Coughlan (2009) and Barber (2012). In the present
paper, the message that is passed from node to node refers to the
marginal and pairwise node reliabilities. To increase computational
efficiency, we do not consider the full nodal joint distributions.
Accuracy is guaranteed through definition of the propagation se-
quence to create intermediate structures for final inference and the
corresponding probability updating rules.

PrPm was first introduced by Tong and Tien (2019). The method
described in the present paper advances upon that work in three
main ways. First, although PrPm could be used for single-source-
single-sink networks and multiple-sources-single-sink networks,
the case of multiple-sources-multiple-sinks networks was not ad-
dressed. In an infrastructure system, the multiple sinks scenario
is particularly relevant to calculate probabilities of providing the
infrastructure resource at multiple end-point distribution nodes.
The directed PrPm, i.e., dPrPm, proposed in this paper addresses
the multiple-sinks case and provides reliabilities at all sink nodes
in the network. Second, although PrPm provided approximations of
the network reliability that were shown to be accurate compared to
the exact solution, there were no guarantees of the accuracy of the
estimates, nor were there bounds that could be placed on the results.
Results were empirically shown to be accurate rather than being
able to provide proofs of their accuracy. dPrPm provides 100% con-
fidence bounds on the reliabilities at sink nodes and proofs are
provided guaranteeing their accuracy. Third, this paper focuses
on reliability assessment of acyclic directed networks as applicable
to infrastructure systems. In these systems, resources are distributed
through a network from supply or generation nodes to distribution
nodes without cycles in the network. The newly described propa-
gation sequences and probability updating rules reflect this case.

Proposed Directed Probability Propagation Method

Networks of Interest

Due to the characteristics of flows in networks, we consider the
links connecting the nodes in the system as directed. The reliability
of a sink node in the system is defined as its accessibility from
a source node. The links in the system are assumed to be indepen-
dent or conditionally independent of each other. In our proposed
method, dPrPm, there is no limitation on the number of source
nodes and sink nodes. An example 16-node network is shown in
Fig. 1, in which solid black circles are source nodes and all hollow
circles are sink nodes. Arrows on links indicate directionality of

Fig. 1. Example network of interest.
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flow. In the following sections, we use the network in Fig. 1 as an
example to illustrate the procedure of dPrPm.

Overall Method

In belief propagation, messages are passed from node to node in the
network to perform inference. An example is shown in Fig. 2, in
which Node A receives the message from Node B and Node C.
It updates the message and then passes the message to Node D.
In the case in which the structure is a tree, belief propagation yields
an exact marginal distribution.

In dPrPm, we start the message propagation from source nodes
in the network. The message being passed here refers to the mar-
ginal node reliability PrðαÞ and pairwise node reliability Prðα; βÞ.
To begin, we remove all links in the network and keep only
the source nodes [Fig. 3(a)]. Then we add link one at a time
[Figs. 3(b and c)] to restore the original connectivity of the network.
The configurations in Figs. 3(b and c) are referred to as intermedi-
ate structures. Every time a link is added, we update the message
PrðαÞ and Prðα;βÞ for all nodes. In the end, once all links are added
[Fig. 3(d)], the reliability of each sink node is obtained.

Heuristic Propagation Sequences for Acyclic Directed
Networks

The message propagates through the network through a link-adding
sequence. The defined sequence affects the accuracy of the result.

When a link is added to create a new intermediate structure,
e.g., adding the dashed link lα→β1

to connect Nodes α and β1

[Figs. 4(a and b)], the reliabilities of multiple sink nodes are influ-
enced. For example, in the case in Fig. 4, after link lα→β1

is added,
additional paths to Nodes β1, β2, and β3 are created. Thus, the mes-
sage relating to these three nodes (β1, β2, and β3) needs updating.
However, we cannot obtain exact values for these updating terms
because the message inherited from the previous step only includes
the marginal and pairwise node reliabilities. Approximations are
necessary for estimating a three-node joint distribution.

To yield a more accurate solution, the objective is to make fewer
approximations during message propagation. A heuristic for mak-
ing fewer approximations is to limit the number of nodes influ-
enced when links are added. As an example, in Fig. 5, Node β is
the only node influenced after adding link lα→β . Thus, we need
only to update the message relating to Node β.

For an acyclic directed network, we can find certain link-adding
sequences that ensure that only one node is influenced every time a
link is added. To illustrate this, we classify all nodes into one of
three types in each intermediate step:

Type A node: in the intermediate structure, all links connected to
the node have been added.

Type B node: in the intermediate structure, all incoming links to
the node have been added.

Type C node: all other nodes.
Fig. 6(a) shows the original connections in the network;

Figs. 6(b and c) are intermediate structures. Node types are marked
next to each node. At the start, no links are directed toward the
source nodes, i.e., they have no incoming links that need to be
added [Fig. 6(b)]. The source nodes have outgoing links that have
not yet been added. Therefore, all source nodes belong to Type B.
In Fig. 6(c), all links connected to Type A nodes have been added.
All incoming links to Type B nodes have been added. The remain-
ing nodes are Type C.

We now provide two proofs showing the ability to define propa-
gation sequences for acyclic directed networks such that only one

Fig. 2. Illustration of belief propagation.

(a) (b) (c) (d)

Fig. 3. Constructing intermediate structures for directed probability propagation method (dPrPm) to obtain reliabilities at all sink nodes.

(a) (b)

Fig. 4. Adding link lα→β1
to form a new intermediate structure.
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node is influenced at each step of the link-adding sequence. This is
done by always adding links originating from Type B nodes.

Theorem 1. All intermediate structures have at least one Type B
node.

Proof. Suppose that for a given intermediate structure, all no-
des belong to either Type A or Type C. LetN be the number of Type
C nodes [Fig. 7(a)], with the Type C nodes in the structure indicated
by the set fα1; : : : ;αNg. Therefore, N ≥ 1; otherwise, all nodes are
Type A and all links have been added. Based on the definition of a
Type C node, there is a path paβ1→α1

directed to α1. Because the
network is acyclic, β1 cannot be α1 and we set it as α2. Similarly,
for Node α2, there is a path paβ2→α2

directed to α2. For the acyclic
network, β2 cannot be α1 or α2 and we set it as α3. Continuing the
deduction to αN , there is a path paβN→αN

directed to αN . Because
βN ∈ fα1; : : : ;αNg, it creates a loop, contradicting the acyclic
assumption. Thus, at least one of the nodes in set fα1; : : : ;αNg
belongs to Type B.

Theorem 2. If we prioritize the links that originate from Type B
nodes in adding sequences, only one node is influenced every time
a link is added to the intermediate structure.

Proof. Suppose a link lα→β is added [Fig. 7(b)]. Node α is
Type B, and Node β must be Type C. This is because if we are
adding a link into β, then clearly not all links into β have been
added, and β is by definition a Type C node. Because we do not
add links originating from Type C nodes (in the example, Node β),
then β has no outgoing links and no node can be reached from
Node β in the current intermediate structure. Thus, Node β is the
only node influenced.

In sum, for acyclic directed networks, there is always a link-
adding sequence for which only one node is influenced for
each added link, and hence which makes the fewest approxima-
tions. Multiple link-adding sequences can satisfy the preceding
requirements.

Message Propagation: Probability Updating Rules

As we add links and create intermediate structures, updates of the
message should be made simultaneously. In dPrPm, the updating
rules are discussed under two different scenarios (Fig. 8). Link lα→β
is added into the intermediate structure and Node γ is a random node

Fig. 5. Adding link heuristically to reduce number of nodes influenced.

Fig. 6. Example node classifications in the network: (a) original connections; and (b and c) intermediate structures.

Fig. 7. Intermediate structures for acyclic directed network proofs.

© ASCE 04019011-4 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 2019, 5(3): 04019011 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
07

/1
8/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



other than Nodes α or β. In Fig. 8(a), β is not in the previous
intermediate structure; in Fig. 8(b), it is. In both scenarios, it is easy
to see that we need only to update messages relating to Node β.
For notation, Pr refers to terms after updating and Pr refers to terms
before updating. Rα→β is the link reliability between Node α and
Node β.

In the first scenario, because Node β is not in the previous
intermediate structure, no approximation is needed [Fig. 8(a)].
The updating rules are

PrðβÞ ¼ PrðαÞRα→β ð1Þ

Prðα;βÞ ¼ PrðαÞRα→β ð2Þ

Prðγ; βÞ ¼ Prðα; γÞRα→β ð3Þ
In the second scenario, Node β is already part of the previous

intermediate structure [Fig. 8(b)]. To calculate the updating rules,
first we construct the three-node joint distribution as shown in
Table 1, which gives the probability shares for each combination
of nodal states; X represents the probability share that all three
nodes, α, β, and γ, are reachable, i.e., Prðα; β; γÞ. The remaining
terms are inferred from the marginal and pairwise node distribu-
tions in the message. In Table 1, for the states of α, β, and γ,
1 denotes that the node is reachable, and 0 otherwise.

X1 ¼ 1 − PrðαÞ − PrðβÞ − PrðγÞ þ Prðα; γÞ
þ Prðα;βÞ þ Prðβ; γÞ − X

X2 ¼ PrðγÞ − Prðα; γÞ − Prðβ; γÞ þ X

X3 ¼ PrðβÞ − Prðβ; γÞ − Prðα; βÞ þ X

X4 ¼ Prðβ; γÞ − X

X5 ¼ PrðαÞ − Prðα; γÞ − Prðα;βÞ þ X

X6 ¼ Prðα; γÞ − X

X7 ¼ Prðα;βÞ − X

X ¼ Prðα; β; γÞ

The updating rules for the scenario in Fig. 8(b), including the
unknown parameter X, are

PrðβÞ ¼ PrðβÞ þ ðPrðαÞ − Prðα; βÞÞRα→β ð4Þ

Prðα; βÞ ¼ Prðα; βÞ þ ðPrðαÞ − Prðα;βÞÞRα→β ð5Þ

Prðβ; γÞ ¼ Prðβ; γÞ þ ðPrðα; γÞ − XÞRα→β ð6Þ

To calculate the exact value of X, we would need the full three-
node joint distribution. For computational and memory storage
efficiency, we only focus on the marginal and pairwise node reli-
abilities and do not carry three-node joint distributions in the
message. However, we are able to bound the value of X based on
the following derivations from probability properties.

First, all the terms in the Probability Shares column in Table 1
should be greater than or equal to zero. Thus, let

X1 ¼ maxfPrðα; γÞ þ Prðβ; γÞ − PrðγÞ; Prðα; βÞ þ Prðβ; γÞ
− PrðβÞ; Prðα; γÞ þ Prðα;βÞ − PrðαÞg ð7Þ

X2 ¼ minfPrðα; βÞ;Prðβ; γÞ; Prðα;βÞ; 1 − PrðαÞ − PrðβÞ
− PrðγÞ þ Prðα;βÞ þ Prðα; γÞ þ Prðβ; γÞg ð8Þ

Then the bounds of X are

X1 ≤ X ≤ X2 ð9Þ

Second, by the definition of conditional probability and the
coherency property of networks

X ¼ Prðα;β; γÞ ¼ Prðα;βjγÞ PrðγÞ ≥ Prðα; βÞ PrðγÞ ð10Þ

Let

X3 ¼ maxfPrðα;βÞ PrðγÞ; Prðα; γÞ PrðβÞ; Prðβ; γÞ PrðαÞg ≤ X

ð11Þ

Similarly, Prðα ¼ 0; β ¼ 0; γÞ ¼ Prðα ¼ 0; β ¼ 0jγÞ PrðγÞ ≤
Prðα ¼ 0; β ¼ 0Þ PrðγÞ.

Fig. 8. Two updating scenarios for added link lα→β .

Table 1. Three-node joint distribution

α β γ Probability shares

0 0 0 X1

0 0 1 X2

0 1 0 X3

0 1 1 X4

1 0 0 X5

1 0 1 X6

1 1 0 X7

1 1 1 X

© ASCE 04019011-5 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
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Thus, Prðα ¼ 0;β ¼ 0;γÞ ¼ PrðγÞ− Prðα;γÞ− Prðβ;γÞ þX ≤
Prðα ¼ 0;β ¼ 0Þ PrðγÞ.

Let t1 ¼ Prðα¼ 0;β ¼ 0ÞPrðγÞ− PrðγÞ þ Prðα;γÞ þ Prðβ;γÞ,
t2 ¼ Prðα ¼ 0; γ ¼ 0Þ PrðβÞ − PrðβÞ þ Prðα; βÞ þ Prðβ; γÞ, and
t3 ¼ Prðβ ¼ 0; γ ¼ 0ÞPrðαÞ − PrðαÞ þ Prðα; βÞ þ Prðα; γÞ.

Then

X ≤ X4 ¼ minft1; t2; t3g ð12Þ

Combining the inequality constraints in Eqs. (9), (11), and (12)

maxfX1;X3g ≤ X ≤ minfX2;X4g ð13Þ

Thus, we obtain the upper bound and lower bound of X. These
derivations enable us to guarantee bounds on the node reliability
values calculated through dPrPm as shown in the following:

Theorem 3. If we assign the lower bound value to X every time
we update the message, we will obtain the lower bound values of
marginal node reliabilities. If we assign the upper bound value to X
every time we update the message, we will obtain the upper bound
values of marginal node reliabilities.

Proof. We prove this theorem separately for the two updating
scenarios in Fig. 8. For the scenario in Fig. 8(a), no approximation
is made. As a result, the updated terms from Eqs. (1)–(3) are not
influenced by the estimation of X.

For the scenario in Fig. 8(b), if we take the lower bound value of
X, then based on Eq. (6), Prðβ; γÞ is overestimated. In the future
updating steps, when link lγ→β is added, Eq. (4) becomes PrðβÞ ¼
PrðβÞ þ ðPrðγÞ − Prðβ; γÞÞRγ→β ; PrðβÞ is then underestimated
at the lower bound because of the overestimation on Prðβ; γÞ.
The same logic applies to taking the upper bound value of X,
which yields an overestimation and upper bound on marginal node
reliabilities.

The bounds can be further refined considering the possible
link-adding sequences satisfying the requirement that only one
node be influenced at each link-adding step. Suppose there are N
link-adding sequences available for a general acyclic directed net-
work. For the ith sequence, we bound the marginal node reliability
of Node α as: Pr ðαÞi ≤ PrðαÞ ≤ Pr ðᾱÞi. Combining all N sequen-
ces gives a refined boundary as

maxi¼1 : : :NfPr ðαÞig ≤ PrðαÞ ≤ mini¼1 : : :NfPr ðᾱÞig ð14Þ

Memory Storage and Computational Complexity
Analysis

For memory storage cost, because the message in dPrPm only in-
cludes marginal and pairwise node reliabilities, the storage cost
is Oðn2Þ.

For computational cost, when adding link lα→β into the inter-
mediate structure, we need only to update the message relating to
Node β. Thus, to add one link and update the message, at most n
nodes are updated. Thus, the computational cost is OðnÞ. In total,
there are m links, which requires updating m times. Thus, the total
computational cost is polynomial at OðmnÞ. This is in comparison
to typical exponential computational costs for binary networks with
n components at Oð2nÞ.

In sum, the workflow of dPrPm is shown in Fig. 9.

Test Applications

We applied the proposed dPrPm to an example network and two
real-world applications. We assessed the performance of the method
in terms of accuracy and computational cost. All results were based
on computations run in MATLAB_R2017b on a computer with
8 GB RAM. For all three applications, results were compared with
Monte Carlo simulation. The first two examples also included exact
solutions for comparison. A more complex gas pipeline network,
for which the exact solution is not available, was analyzed in the
third example under two seismic scenarios. Both accuracy and
computational efficiency were compared to assess the performance
of dPrPm.

Directed Grid Network

First, we applied dPrPm to the example network shown in Fig. 10,
also used for illustration of the method earlier in this paper. The
network was a variation of the undirected grid network that was
studied by Tong and Tien (2019) and Dueñas-Osorio (2017).
Instead of looking only at the corner-to-corner reliability of the
system, in this example we changed the single-source-single-sink
network into a multiple-sources-multiple-sinks directed acyclic
network. Nodes 1, 3, and 13 were taken as source nodes, and the
remaining nodes were sink nodes. The objective was to obtain reli-
ability estimates for the probabilities of being able to receive the
resource provided at the source nodes at each of the sink nodes.

Fig. 9. dPrPm workflow.
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For simplicity, all links were assumed to be equally reliable, with
reliability Rl. Varying link reliabilities can be easily incorporated in
the probability updating calculations during message passing.

We tested the performance of dPrPm under two cases: a reliable
case where Rl ¼ 0.9, and an unreliable case in which Rl ¼ 0.1.
Exact solutions were obtained through total enumeration. For
dPrPm, we tried 100 different link-adding sequences to refine the
reliability bounds for each sink node. Percentage error for dPrPm
was calculated by taking the median value between the upper and
lower bounds. For Monte Carlo simulation, we generated 100,000
runs for each node. Results are shown in Tables 2 and 3. The com-
putational cost is compared in Table 4.

Compared with the approximated value given by Monte Carlo
simulation, dPrPm provides exact upper bounds and lower bounds
to the solution. For both the reliable and unreliable cases, dPrPm
outperformed Monte Carlo, as evidenced by the percentage error
values compared with the exact solutions (Tables 2 and 3). In ad-
dition, in terms of the ability to capture rare events, the reliability at
Node 16 for Rl ¼ 0.1 was the lowest-probability event. In Table 3,
the percentage error given by Monte Carlo simulation increased to
14.7% for Node 16, whereas the upper and lower bounds given by
dPrPm were still narrow. For dPrPm, the percentage error arises
from deviations in the calculated reliability beyond the fifth deci-
mal place.

Although total enumeration provides the exact solution, it is also
computationally intensive. This example took more than 1.5 h to
generate a solution (Table 4). In comparison, dPrPm took less than
0.4 s to compute the dPrPm solution 100 times. This is also two
orders of magnitude faster than Monte Carlo simulation. Although
dPrPm yields an approximated solution with a 100% confidence
level rather than the exact solution, the gap between the bounds can
be negligible depending on the accuracy requirement, and as shown
in the results for this example.

Power Distribution Network

Next, we applied the proposed dPrPm to a four-substation power
distribution network from Pacific Gas and Electric (Ostrom 2004)
(Fig. 11), which also was investigated by Der Kiureghian and Song
(2008) and Tien (2017). The system consisted of circuit breakers,

Fig. 10. Directed grid network.

Table 2. Exact solutions, Monte Carlo simulation, and dPrPm for directed grid network when Rl ¼ 0.9

Node Exact

Monte Carlo dPrPm

Result Error (%) Lower bound Upper bound Gap Error (%)

2 0.99000 0.99016 0.01616 0.99000 0.99000 0.00000 0.00000
4 0.98015 0.98022 0.00670 0.98015 0.98015 0.00000 0.00000
5 0.90000 0.89885 −0.12778 0.90000 0.90000 0.00000 0.00000
6 0.99510 0.99475 −0.03545 0.99510 0.99510 0.00000 0.00000
7 0.98956 0.98974 0.01827 0.98956 0.98956 0.00000 0.00000
8 0.89060 0.89086 0.02882 0.89060 0.89060 0.00000 0.00000
9 0.98100 0.98138 0.03874 0.98100 0.98100 0.00000 0.00000
10 0.88290 0.88355 0.07362 0.88290 0.88290 0.00000 0.00000
11 0.97734 0.97758 0.02416 0.97734 0.97734 0.00000 0.00000
12 0.97457 0.97456 −0.00054 0.97457 0.97457 0.00000 0.00000
14 0.97946 0.97889 −0.05830 0.97946 0.97946 0.00000 0.00000
15 0.98498 0.98544 0.04671 0.98498 0.98498 0.00000 0.00000
16 0.98539 0.98592 0.05393 0.98506 0.98558 0.00048 −0.00532

Table 3. Exact solutions, Monte Carlo simulation, and dPrPm for directed grid network when Rl ¼ 0.1

Node Exact

Monte Carlo dPrPm

Result Error (%) Lower bound Upper bound Gap Error (%)

2 0.19000 0.18899 −0.53158 0.19000 0.19000 0.00000 0.00000
4 0.10092 0.10160 0.66962 0.10092 0.10092 0.00000 0.00000
5 0.10000 0.10191 1.91000 0.10000 0.10000 0.00000 0.00000
6 0.02986 0.03034 1.60529 0.02986 0.02986 0.00000 0.00000
7 0.10269 0.10242 −0.26046 0.10269 0.10269 0.00000 0.00000
8 0.01027 0.01057 2.93370 0.01027 0.01027 0.00000 0.00000
9 0.10900 0.10970 0.64220 0.10900 0.10900 0.00000 0.00000
10 0.01090 0.01169 7.24771 0.01090 0.01090 0.00000 0.00000
11 0.01135 0.01145 0.91177 0.01135 0.01135 0.00000 0.00000
12 0.00215 0.00198 −7.95624 0.00215 0.00215 0.00000 0.00000
14 0.10098 0.09956 −1.40720 0.10098 0.10098 0.00000 0.00000
15 0.01122 0.01177 4.89889 0.01122 0.01122 0.00000 0.00000
16 0.00134 0.00114 −14.65189 0.00134 0.00134 0.00000 −0.00041
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switches, and transformers. The solid black circles represent three
source nodes, and the sink node is Node 23. The other 19 compo-
nents each represent a triplet configuration in the system of switch-
breaker-switch.

Although dPrPm provides the reliability at all nodes in the net-
work, for simplicity, we only focused on the reliability of Node 23
in this example. We assumed no nodal failure, and each link had
the same reliability Rl. Varying link reliabilities can easily be in-
corporated. For comparison, the method of total enumeration was
used to obtain the exact solution. The network was tested under
three scenarios for systems of varying reliabilities: Rl ¼ 0.9, 0.99,
and 0.3. Monte Carlo simulation was also conducted, with 100,000
realizations for each value of Rl (Table 5). Computational cost is
compared in Table 6.

dPrPm provided a highly accurate solution, with a maximum
percentage error less than 0.05% for all three scenarios (Table 5).
For the lowest-probability event, Rl ¼ 0.3, Monte Carlo simulation
had the highest error, 8.63%, whereas dPrPm produced a solution
with 0.00295% error (Table 5). In terms of computation time,
dPrPm ran almost 100 times faster than Monte Carlo simulation
(Table 6).

In this example, we also investigated the effect of using results
from multiple link-adding sequences to refine the bounds for
dPrPm [Eq. (14)]. Theoretically, the total number of link-adding
sequences satisfying the requirements previously described is
finite. As a result, the best solution by dPrPm can be obtained by
considering all of them. Fig. 12 shows the evolution of the bounds
as the number of sequences considered increases. The gap between
the upper bound and lower bound dropped quickly in the first

20 runs for all three cases (Fig. 12). The size of the gap then leveled
off. Enumeration of all possible link-adding sequences is com-
putationally intensive. Therefore, rather than finding all possible
sequences, we set the number of sequences to 100 to balance ac-
curacy and efficiency.

Gas Pipeline Network

Finally, dPrPm was tested for a larger and more complex gas pipe-
line network. The pipeline information for the Los Angeles area is
available from the California Energy Commission’s GIS open data
website (California Energy Commission 2018). This network pre-
viously was studied to assess reliability of buried pipelines under
earthquakes (e.g., Lanzano et al. 2014; Ambraseys and Menu 1998).
The satellite map of the investigated area is shown in Fig. 13. The
extracted layout of the network is shown in Fig. 14, with pipelines
between nodes represented by straight lines, and arrows indicating
the directionality of the links. We analyzed the pipeline network
reliability under two scenarios: one moderate earthquake with peak

Table 4. Computational cost of exact solution, Monte Carlo simulation,
and dPrPm for directed grid network

Method Time (s)

Exact solution 5,766.37
Monte Carlo 29.88
dPrPm 0.32

Fig. 11. Power distribution network.

Table 5. Exact solutions, Monte Carlo simulation, and dPrPm for power
distribution network at different Rl

Rl Exact

Monte Carlo dPrPm

Result Error (%)
Lower
bound

Upper
bound Gap Error (%)

0.9 0.85741 0.85805 0.07490 0.85591 0.85807 0.00216 −0.04886
0.99 0.98969 0.98939 −0.02981 0.98968 0.98969 0.00001 −0.00018
0.3 0.00221 0.00240 8.63048 0.00221 0.00221 0.00000 0.00295

Table 6. Computational cost of exact solution, Monte Carlo simulation,
and dPrPm for power distribution network

Method Time (s)

Exact solution 36,864.37
Monte Carlo 35.97
dPrPm 0.36

Fig. 12. Gap between upper and lower bounds with respect to number
of link-adding sequences considered.
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ground acceleration (PGA) 0.1g, and a more severe earthquake
with PGA 0.35g. The network had 96 nodes and 123 directed
links. We assumed that Nodes 1, 4, 20, 92, 36, 46, 47, and 92 were
source nodes (Fig. 14). The remaining nodes were considered as
sink nodes. In total, there were 8 source nodes and 88 sink nodes.

In this example, we first found the link reliabilities under the
two seismic scenarios as described by Lanzano et al. (2014) and
Ambraseys and Menu (1998). Reliabilities at each sink node were
then obtained by running dPrPm 100 times and Monte Carlo sim-
ulation with 100,000 runs under the two earthquakes. The results of
the two methods are compared in Figs. 15 and 16 for PGAs of 0.1g
and 0.35g, respectively. For clarity, nodes are ordered by increasing
reliability. The exact solution is not available for this network. In all
plots, the bold solid line denotes the upper bound given by dPrPm.
The thin solid line denotes the lower bound. The dashed line de-
notes the result given by Monte Carlo simulation. In Fig. 15, for a

0.1g earthquake, the upper bound and lower bound overlap, indi-
cating highly confined bounds, and therefore only the upper bound
line can be seen. Figs. 15(a) and 16(a) show the difference between
the dPrPm reliability bounds and results from Monte Carlo. The
median value between the upper and lower dPrPm bounds was used
as the baseline, and the difference from the median value is shown.
Figs. 15(b) and 16(b) show the values of the upper and lower bounds
by dPrPm and the solution by Monte Carlo simulation.

In Fig. 15, the narrowness of the bounds obtained by dPrPm is
observed. With the guaranteed accuracy of dPrPm, the value of the
bounds can be taken as close to the exact solution. In addition, for
the approximated results provided by Monte Carlo, it is unknown if
the simulations underestimate or overestimate the exact solution, as
can be seen by the randomness in the positive or negative differ-
ences from the median value in Fig. 15(a). In Fig. 16, the widest gap
between bounds for all nodes was about 1.6%. Whereas dPrPm
gave guaranteed upper and lower bounds to the solution, the 100%
confidence level was unachievable for Monte Carlo simulation.
Table 7 compares the computation time for calculation. Consistent
with the previous applications, dPrPm took two orders of magni-
tude less computation time to obtain a result.

Extension to Dependent Case and Cascading
Failures

Although dPrPm is designed for networks with conditionally inde-
pendent links, it can also be extended to dependent cases. One ap-
proach to do this is to condition on the parent nodes governing the
links. For example, in the gas pipeline network application, links
were conditioned on seismic intensity. Because the computational
cost is fairly low (in this case, 1.80 s for a network of 123 links), the
prior system reliability can be found by conducting inference over
all enumerated parental node combinations, if tractable.

The special dependency case in which the link reliability Rα→β

depends on the state of Node α is also considered. When link
lα→β is added to the intermediate structure, the updating rules in
Eqs. (1)–(6) assume that the link reliability Rα→β is independent
of the node state. By replacing Rα→β with the link reliability con-
ditioned on the node state (Rα→βjα), similar updating rules for
this special dependent case are built. For example, Eq. (3) is modi-
fied to Prðγ;βÞ ¼ Prðα; γÞRα→βjα¼1, and Eq. (6) is modified to

Prðβ; γÞ ¼ Prðβ; γÞ þ ðPrðα; γÞ − XÞRα→βjα¼1. These modified
updating rules enable dPrPm to directly address this case.

In practice, the failures of many networked infrastructure sys-
tems are the result of failures propagating or cascading through
a network. To capture these effects with dPrPm, we treat a failure
as an observation of the system. Based on the observation, we up-
date the link reliabilities accordingly. With the redefined link reli-
abilities, we then rerun dPrPm to update the reliabilities at all sink
nodes. Any new failures that are calculated are the cascaded result
from previous node failures.

Conclusion

This paper proposed a new analytical method called the directed
probability propagation method (dPrPm) to evaluate the reliability
of acyclic directed networks. Through a defined propagation se-
quence and accompanying probability updating rules, the method
results in guaranteed upper and lower bounds of reliabilities at all
sink nodes in a network. The benefits of dPrPm are summarized in
five aspects

Fig. 13. Gas pipeline network (satellite) adapted from California
Energy Commission’s GIS open data website.

Fig. 14. Gas pipeline network (extracted).
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1. No minimum cut sets or minimum link sets are needed to com-
pute network reliabilities. Whereas many other analytical meth-
ods rely on MLS or MCS, e.g., Bayesian network analysis or
recursive decomposition algorithms (RDA), dPrPm does not re-
quire the computationally intensive enumeration of component
states, MCS, or MLS to determine the system outcome.

2. The method is applicable to the multiple-sources-multiple-sinks
problem. Previous work investigated node accessibility as a mea-
sure of network reliability. However, these methods are often
limited to the one-sink problem. To assess the reliability of all
sink nodes in the network, researchers have to run the analysis

multiple times. In dPrPm, because the message contains the
marginal node reliabilities, each run gives the reliabilities of all
sink nodes.

3. dPrPm is computationally efficient. Compared with existing
analytical algorithms such as RDA and inference in Bayesian
networks, computational complexity is reduced from an expo-
nential increaseOð2nÞwith system size to a polynomial increase
OðmnÞ. Time consumption comparisons in the three test appli-
cations showed orders of magnitude savings in computation
time.

4. Results given by dPrPm are exact bounds. Whereas many other
methods, e.g., Monte Carlo simulation, give an approximated
answer, a 100% confidence level is guaranteed by dPrPm. In
many cases, as shown in the test applications, these bounds are
narrow, resulting in solutions with very low percentage errors
compared with the exact solution.

5. Performance of dPrPm is independent of link reliabilities. Many
sampling-based approaches are limited in the ability to analyze
rare events or by computational efficiency if the probabilities of

Fig. 15. dPrPm and Monte Carlo simulation of gas pipeline network at PGA ¼ 0.1g (nodes ordered by increasing reliability).

Fig. 16. dPrPm and Monte Carlo simulation of gas pipeline network at PGA ¼ 0.35g (nodes ordered by increasing reliability).

Table 7. Computational cost of Monte Carlo simulation and dPrPm for gas
pipeline network

Method Time (s)

Monte Carlo 180.22
dPrPm 1.80
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rare events are of interest. dPrPm is an analytical method, and its
efficiency is independent of link or network reliabilities.
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Notation

The following symbols are used in this paper:
lα→β = link connecting Node α to Node β;

m = number of links in network;
n = number of nodes in network;
α = lower case Greek letter refers to a node in the

network;
A = upper case letter refers to node type;
Pr = probability after updating;

PrðαÞ = probability that Node α is reachable;
PrðᾱÞ = upper bound of PrðαÞ;
Prðα

¯
Þ = lower bound of PrðαÞ;

Prðα; βÞ = probability that both Node α and Node β are
reachable;

Prðα;β ¼ 0Þ = probability that Node α is reachable but Node β is
not reachable;

PrðαjβÞ = probability that Node α is reachable given Node β
is reachable;

paα→β = path from Node α to Node β; and
Rα→β = reliability of the link connecting Node α to

Node β.
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